File size: 7,422 Bytes
f0aca2c ae8fa1d f0aca2c 27b94c0 f0aca2c 03a32b6 f0aca2c bef06a2 f0aca2c 03a32b6 2a82417 03a32b6 5a35d7e 4eb38cf f0aca2c 03a32b6 f0aca2c 03a32b6 ce81c31 35e83e6 ce81c31 03a32b6 bef06a2 f0aca2c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import openai
import os
openai.api_key=os.getenv("OPENAI_API_KEY")
from dotenv import load_dotenv
load_dotenv()
from flask import Flask, jsonify, render_template, request
import requests, json
# import nltk
# nltk.download("punkt")
import shutil
from werkzeug.utils import secure_filename
from werkzeug.datastructures import FileStorage
import nltk
from datetime import datetime
import openai
from langchain.llms import OpenAI
from langchain.embeddings.openai import OpenAIEmbeddings
#from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from langchain.document_loaders import SeleniumURLLoader, PyPDFLoader
from langchain.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import VectorDBQA
from langchain.document_loaders import UnstructuredFileLoader, TextLoader
from langchain import PromptTemplate
from langchain.chains import RetrievalQA
from langchain.memory import ConversationBufferWindowMemory
import warnings
warnings.filterwarnings("ignore")
openai.api_key = os.environ["OPENAI_API_KEY"]
#app = Flask(__name__)
app = Flask(__name__, template_folder="./")
# Create a directory in a known location to save files to.
uploads_dir = os.path.join(app.root_path,'static', 'searchUploads')
os.makedirs(uploads_dir, exist_ok=True)
def pretty_print_docs(docs):
print(f"\n{'-' * 100}\n".join([f"Document {i + 1}:\n\n" + "Document Length>>>" + str(
len(d.page_content)) + "\n\nDocument Source>>> " + d.metadata['source'] + "\n\nContent>>> " + d.page_content for
i, d in enumerate(docs)]))
def getEmbeddingModel(embeddingId):
# if (embeddingId == 1):
# embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# else:
# embeddings = OpenAIEmbeddings()
return OpenAIEmbeddings()
def clearKBUploadDirectory(uploads_dir):
for filename in os.listdir(uploads_dir):
file_path = os.path.join(uploads_dir, filename)
print("Clearing Doc Directory. Trying to delete" + file_path)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
@app.route('/', methods=['GET'])
def test():
return "Docker hello"
@app.route('/KBUploader')
def KBUpload():
return render_template("KBTrain.html")
@app.route('/aiassist')
def aiassist():
return render_template("index.html")
@app.route('/post_json', methods=['POST'])
def post_json():
print(f"\n{'*' * 100}\n")
print("Request Received >>>>>>>>>>>>>>>>>>", datetime.now().strftime("%H:%M:%S"))
content_type = request.headers.get('Content-Type')
if (content_type == 'application/json'):
requestQuery = request.get_json()
print()
relevantDoc=vectordb.similarity_search_with_score(requestQuery['query'],distance_metric="cos", k = 3)
searchResultArray=[]
for doc in relevantDoc:
searchResult = {}
print(f"\n{'-' * 100}\n")
searchResult['documentSource']=doc[len(doc)-2].metadata['source']
searchResult['pageContent']=doc[len(doc)-2].page_content
searchResult['similarityScore']=str(doc[len(doc)-1])
print(doc)
print("Document Source>>>>>> "+searchResult['documentSource']+"\n\n")
print("Page Content>>>>>> "+searchResult['pageContent']+"\n\n")
print("Similarity Score>>>> "+searchResult['similarityScore'])
print(f"\n{'-' * 100}\n")
searchResultArray.append(searchResult)
print(f"\n{'*' * 100}\n")
return jsonify(botMessage=searchResultArray)
else:
return 'Content-Type not supported!'
@app.route('/file_upload', methods=['POST'])
def file_Upload():
fileprovided=not request.files.getlist('files[]')[0].filename==''
urlProvided=not request.form.getlist('weburl')[0]==''
print("*******")
print("File Provided:"+str(fileprovided))
print("URL Provided:"+str(urlProvided))
print("*******")
documents = []
if fileprovided:
#Delete Files
for filename in os.listdir(uploads_dir):
file_path = os.path.join(uploads_dir, filename)
print("Clearing Doc Directory. Trying to delete"+file_path)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
print('Failed to delete %s. Reason: %s' % (file_path, e))
#Read and Embed New Files provided
for file in request.files.getlist('files[]'):
print("File Received>>>"+file.filename)
file.save(os.path.join(uploads_dir, secure_filename(file.filename)))
#loader = UnstructuredFileLoader(os.path.join(uploads_dir, secure_filename(file.filename)), mode='elements')
loader = PyPDFLoader(os.path.join(uploads_dir, secure_filename(file.filename)))
documents.extend(loader.load())
if urlProvided:
weburl=request.form.getlist('weburl')
print(weburl)
urlList=weburl[0].split(';')
print(urlList)
print("Selenium Started", datetime.now().strftime("%H:%M:%S"))
#urlLoader=RecursiveUrlLoader(urlList[0])
urlLoader=SeleniumURLLoader(urlList)
print("Selenium Completed", datetime.now().strftime("%H:%M:%S"))
documents.extend(urlLoader.load())
print(uploads_dir)
global chain;
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=150)
#text_splitter = CharacterTextSplitter(chunk_size=1500, chunk_overlap=150,separator="</Q>")
texts = text_splitter.split_documents(documents)
print("All chunk List START ***********************\n\n")
pretty_print_docs(texts)
print("All chunk List END ***********************\n\n")
embeddings = OpenAIEmbeddings()
#from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
#embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# from langchain.embeddings import HuggingFaceEmbeddings
# model_name = "sentence-transformers/all-MiniLM-L6-v2"
# model_kwargs = {'device': 'cpu'}
# encode_kwargs = {'normalize_embeddings': False}
# embeddings = HuggingFaceEmbeddings(
# model_name=model_name,
# model_kwargs=model_kwargs,
# encode_kwargs=encode_kwargs
# )
global vectordb
#vectordb = Chroma.from_documents(texts,embeddings)
vectordb=Chroma.from_documents(documents=texts, embedding=embeddings, collection_metadata={"hnsw:space": "cosine"})
return render_template("index.html")
if __name__ == '__main__':
app.run(host='0.0.0.0', port=int(os.environ.get('PORT', 7860)))
|