Spaces:
Sleeping
Sleeping
Create app.py
#1
by
dennistrujillo
- opened
app.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import pydicom
|
5 |
+
import os
|
6 |
+
from skimage import transform
|
7 |
+
import torch
|
8 |
+
from segment_anything import sam_model_registry
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from PIL import Image
|
11 |
+
import io
|
12 |
+
|
13 |
+
# Function to load bounding boxes from CSV
|
14 |
+
def load_bounding_boxes(csv_file):
|
15 |
+
# Assuming CSV file has columns: 'filename', 'x_min', 'y_min', 'x_max', 'y_max'
|
16 |
+
df = pd.read_csv(csv_file)
|
17 |
+
return df
|
18 |
+
|
19 |
+
# Function to load DICOM images
|
20 |
+
def load_dicom_images(folder_path):
|
21 |
+
images = []
|
22 |
+
for filename in sorted(os.listdir(folder_path)):
|
23 |
+
if filename.endswith(".dcm"):
|
24 |
+
filepath = os.path.join(folder_path, filename)
|
25 |
+
ds = pydicom.dcmread(filepath)
|
26 |
+
img = ds.pixel_array
|
27 |
+
images.append(img)
|
28 |
+
return np.array(images)
|
29 |
+
|
30 |
+
# MedSAM inference function
|
31 |
+
def medsam_inference(medsam_model, img, box, H, W, target_size):
|
32 |
+
# Resize image and box to target size
|
33 |
+
img_resized = transform.resize(img, (target_size, target_size), anti_aliasing=True)
|
34 |
+
box_resized = np.array(box) * (target_size / np.array([W, H, W, H]))
|
35 |
+
|
36 |
+
# Convert image to PyTorch tensor
|
37 |
+
img_tensor = torch.from_numpy(img_resized).float().unsqueeze(0).unsqueeze(0).to(device) # Add channel and batch dimension
|
38 |
+
|
39 |
+
# Model expects box in format (x0, y0, x1, y1)
|
40 |
+
box_tensor = torch.tensor(box_resized, dtype=torch.float32).unsqueeze(0).to(device) # Add batch dimension
|
41 |
+
|
42 |
+
# MedSAM inference
|
43 |
+
img_embed = medsam_model.image_encoder(img_tensor)
|
44 |
+
mask = medsam_model.predict(img_embed, box_tensor)
|
45 |
+
|
46 |
+
# Post-process mask: resize back to original size
|
47 |
+
mask_resized = transform.resize(mask[0].cpu().numpy(), (H, W))
|
48 |
+
|
49 |
+
return mask_resized
|
50 |
+
|
51 |
+
# Function for visualizing images with masks
|
52 |
+
def visualize(images, masks, box):
|
53 |
+
fig, ax = plt.subplots(len(images), 2, figsize=(10, 5*len(images)))
|
54 |
+
for i, (image, mask) in enumerate(zip(images, masks)):
|
55 |
+
ax[i, 0].imshow(image, cmap='gray')
|
56 |
+
ax[i, 0].add_patch(plt.Rectangle((box[0], box[1]), box[2]-box[0], box[3]-box[1], edgecolor="red", facecolor="none"))
|
57 |
+
ax[i, 1].imshow(image, cmap='gray')
|
58 |
+
ax[i, 1].imshow(mask, alpha=0.5, cmap="jet")
|
59 |
+
plt.tight_layout()
|
60 |
+
buf = io.BytesIO()
|
61 |
+
plt.savefig(buf, format='png')
|
62 |
+
plt.close(fig)
|
63 |
+
buf.seek(0)
|
64 |
+
return buf
|
65 |
+
|
66 |
+
# Main function for Gradio app
|
67 |
+
def process_images(csv_file, dicom_folder, target_size):
|
68 |
+
bounding_boxes = load_bounding_boxes(csv_file)
|
69 |
+
dicom_images = load_dicom_images(dicom_folder)
|
70 |
+
|
71 |
+
# Initialize MedSAM model
|
72 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
73 |
+
medsam_model = sam_model_registry['your_model_version'](checkpoint='path_to_your_checkpoint')
|
74 |
+
medsam_model = medsam_model.to(device)
|
75 |
+
medsam_model.eval()
|
76 |
+
|
77 |
+
masks = []
|
78 |
+
for index, row in bounding_boxes.iterrows():
|
79 |
+
if index >= len(dicom_images):
|
80 |
+
continue # Skip if the index exceeds the number of images
|
81 |
+
|
82 |
+
image = dicom_images[index]
|
83 |
+
H, W = image.shape
|
84 |
+
box = [row['x_min'], row['y_min'], row['x_max'], row['y_max']]
|
85 |
+
|
86 |
+
mask = medsam_inference(medsam_model, image, box, H, W, target_size)
|
87 |
+
masks.append(mask)
|
88 |
+
|
89 |
+
visualizations = visualize(dicom_images, masks, box)
|
90 |
+
|
91 |
+
return visualizations, np.array(masks)
|
92 |
+
|
93 |
+
# Set up Gradio interface
|
94 |
+
iface = gr.Interface(
|
95 |
+
fn=process_images,
|
96 |
+
inputs=[gr.inputs.File(type="file"), gr.inputs.Directory()],
|
97 |
+
outputs=[gr.outputs.Image(type="plot"), gr.outputs.File(type="numpy")]
|
98 |
+
)
|
99 |
+
|
100 |
+
iface.launch()
|