MinerU / magic_pdf /cli /magicpdf.py
derful's picture
Upload folder using huggingface_hub
240e0a0 verified
"""
这里实现2个click命令:
第一个:
接收一个完整的s3路径,例如:s3://llm-pdf-text/pdf_ebook_and_paper/pre-clean-mm-markdown/v014/part-660420b490be-000008.jsonl?bytes=0,81350
1)根据~/magic-pdf.json里的ak,sk等,构造s3cliReader读取到这个jsonl的对应行,返回json对象。
2)根据Json对象里的pdf的s3路径获取到他的ak,sk,endpoint,构造出s3cliReader用来读取pdf
3)从magic-pdf.json里读取到本地保存图片、Md等的临时目录位置,构造出LocalImageWriter,用来保存截图
4)从magic-pdf.json里读取到本地保存图片、Md等的临时目录位置,构造出LocalIRdWriter,用来读写本地文件
最后把以上步骤准备好的对象传入真正的解析API
第二个:
接收1)pdf的本地路径。2)模型json文件(可选)。然后:
1)根据~/magic-pdf.json读取到本地保存图片、md等临时目录的位置,构造出LocalImageWriter,用来保存截图
2)从magic-pdf.json里读取到本地保存图片、Md等的临时目录位置,构造出LocalIRdWriter,用来读写本地文件
3)根据约定,根据pdf本地路径,推导出pdf模型的json,并读入
效果:
python magicpdf.py json-command --json s3://llm-pdf-text/scihub/xxxx.json?bytes=0,81350
python magicpdf.py pdf-command --pdf /home/llm/Downloads/xxxx.pdf --model /home/llm/Downloads/xxxx.json 或者 python magicpdf.py --pdf /home/llm/Downloads/xxxx.pdf
"""
import os
import json as json_parse
import click
from loguru import logger
from pathlib import Path
from magic_pdf.libs.version import __version__
from magic_pdf.libs.MakeContentConfig import DropMode, MakeMode
from magic_pdf.libs.draw_bbox import draw_layout_bbox, draw_span_bbox
from magic_pdf.pipe.UNIPipe import UNIPipe
from magic_pdf.pipe.OCRPipe import OCRPipe
from magic_pdf.pipe.TXTPipe import TXTPipe
from magic_pdf.libs.path_utils import (
parse_s3path,
parse_s3_range_params,
remove_non_official_s3_args,
)
from magic_pdf.libs.config_reader import (
get_local_dir,
get_s3_config,
)
from magic_pdf.rw.S3ReaderWriter import S3ReaderWriter
from magic_pdf.rw.DiskReaderWriter import DiskReaderWriter
from magic_pdf.rw.AbsReaderWriter import AbsReaderWriter
import csv
import copy
import magic_pdf.model as model_config
parse_pdf_methods = click.Choice(["ocr", "txt", "auto"])
def prepare_env(pdf_file_name, method):
local_parent_dir = os.path.join(get_local_dir(), "magic-pdf", pdf_file_name, method)
local_image_dir = os.path.join(str(local_parent_dir), "images")
local_md_dir = local_parent_dir
os.makedirs(local_image_dir, exist_ok=True)
os.makedirs(local_md_dir, exist_ok=True)
return local_image_dir, local_md_dir
def write_to_csv(csv_file_path, csv_data):
with open(csv_file_path, mode="a", newline="", encoding="utf-8") as csvfile:
# 创建csv writer对象
csv_writer = csv.writer(csvfile)
# 写入数据
csv_writer.writerow(csv_data)
logger.info(f"数据已成功追加到 '{csv_file_path}'")
def do_parse(
pdf_file_name,
pdf_bytes,
model_list,
parse_method,
f_draw_span_bbox=True,
f_draw_layout_bbox=True,
f_dump_md=True,
f_dump_middle_json=True,
f_dump_model_json=True,
f_dump_orig_pdf=True,
f_dump_content_list=True,
f_make_md_mode=MakeMode.MM_MD,
):
orig_model_list = copy.deepcopy(model_list)
local_image_dir, local_md_dir = prepare_env(pdf_file_name, parse_method)
logger.info(f"local output dir is {local_md_dir}")
image_writer, md_writer = DiskReaderWriter(local_image_dir), DiskReaderWriter(local_md_dir)
image_dir = str(os.path.basename(local_image_dir))
if parse_method == "auto":
jso_useful_key = {"_pdf_type": "", "model_list": model_list}
pipe = UNIPipe(pdf_bytes, jso_useful_key, image_writer, is_debug=True)
elif parse_method == "txt":
pipe = TXTPipe(pdf_bytes, model_list, image_writer, is_debug=True)
elif parse_method == "ocr":
pipe = OCRPipe(pdf_bytes, model_list, image_writer, is_debug=True)
else:
logger.error("unknown parse method")
exit(1)
pipe.pipe_classify()
"""如果没有传入有效的模型数据,则使用内置model解析"""
if len(model_list) == 0:
if model_config.__use_inside_model__:
pipe.pipe_analyze()
orig_model_list = copy.deepcopy(pipe.model_list)
else:
logger.error("need model list input")
exit(1)
pipe.pipe_parse()
pdf_info = pipe.pdf_mid_data["pdf_info"]
if f_draw_layout_bbox:
draw_layout_bbox(pdf_info, pdf_bytes, local_md_dir)
if f_draw_span_bbox:
draw_span_bbox(pdf_info, pdf_bytes, local_md_dir)
md_content = pipe.pipe_mk_markdown(image_dir, drop_mode=DropMode.NONE, md_make_mode=f_make_md_mode)
if f_dump_md:
"""写markdown"""
md_writer.write(
content=md_content,
path=f"{pdf_file_name}.md",
mode=AbsReaderWriter.MODE_TXT,
)
if f_dump_middle_json:
"""写middle_json"""
md_writer.write(
content=json_parse.dumps(pipe.pdf_mid_data, ensure_ascii=False, indent=4),
path=f"{pdf_file_name}_middle.json",
mode=AbsReaderWriter.MODE_TXT,
)
if f_dump_model_json:
"""写model_json"""
md_writer.write(
content=json_parse.dumps(orig_model_list, ensure_ascii=False, indent=4),
path=f"{pdf_file_name}_model.json",
mode=AbsReaderWriter.MODE_TXT,
)
if f_dump_orig_pdf:
"""写源pdf"""
md_writer.write(
content=pdf_bytes,
path=f"{pdf_file_name}_origin.pdf",
mode=AbsReaderWriter.MODE_BIN,
)
content_list = pipe.pipe_mk_uni_format(image_dir, drop_mode=DropMode.NONE)
if f_dump_content_list:
"""写content_list"""
md_writer.write(
content=json_parse.dumps(content_list, ensure_ascii=False, indent=4),
path=f"{pdf_file_name}_content_list.json",
mode=AbsReaderWriter.MODE_TXT,
)
@click.group()
@click.version_option(__version__, "--version", "-v", help="显示版本信息")
@click.help_option("--help", "-h", help="显示帮助信息")
def cli():
pass
@cli.command()
@click.option("--json", type=str, help="输入一个S3路径")
@click.option(
"--method",
type=parse_pdf_methods,
help="指定解析方法。txt: 文本型 pdf 解析方法, ocr: 光学识别解析 pdf, auto: 程序智能选择解析方法",
default="auto",
)
@click.option("--inside_model", type=click.BOOL, default=True, help="使用内置模型测试")
@click.option("--model_mode", type=click.STRING, default="full",
help="内置模型选择。lite: 快速解析,精度较低,full: 高精度解析,速度较慢")
def json_command(json, method, inside_model, model_mode):
model_config.__use_inside_model__ = inside_model
model_config.__model_mode__ = model_mode
if not json.startswith("s3://"):
logger.error("usage: magic-pdf json-command --json s3://some_bucket/some_path")
exit(1)
def read_s3_path(s3path):
bucket, key = parse_s3path(s3path)
s3_ak, s3_sk, s3_endpoint = get_s3_config(bucket)
s3_rw = S3ReaderWriter(
s3_ak, s3_sk, s3_endpoint, "auto", remove_non_official_s3_args(s3path)
)
may_range_params = parse_s3_range_params(s3path)
if may_range_params is None or 2 != len(may_range_params):
byte_start, byte_end = 0, None
else:
byte_start, byte_end = int(may_range_params[0]), int(may_range_params[1])
byte_end += byte_start - 1
return s3_rw.read_jsonl(
remove_non_official_s3_args(s3path),
byte_start,
byte_end,
AbsReaderWriter.MODE_BIN,
)
jso = json_parse.loads(read_s3_path(json).decode("utf-8"))
s3_file_path = jso.get("file_location")
if s3_file_path is None:
s3_file_path = jso.get("path")
pdf_file_name = Path(s3_file_path).stem
pdf_data = read_s3_path(s3_file_path)
do_parse(
pdf_file_name,
pdf_data,
jso["doc_layout_result"],
method,
)
@cli.command()
@click.option("--local_json", type=str, help="输入一个本地jsonl路径")
@click.option(
"--method",
type=parse_pdf_methods,
help="指定解析方法。txt: 文本型 pdf 解析方法, ocr: 光学识别解析 pdf, auto: 程序智能选择解析方法",
default="auto",
)
@click.option("--inside_model", type=click.BOOL, default=True, help="使用内置模型测试")
@click.option("--model_mode", type=click.STRING, default="full",
help="内置模型选择。lite: 快速解析,精度较低,full: 高精度解析,速度较慢")
def local_json_command(local_json, method, inside_model, model_mode):
model_config.__use_inside_model__ = inside_model
model_config.__model_mode__ = model_mode
def read_s3_path(s3path):
bucket, key = parse_s3path(s3path)
s3_ak, s3_sk, s3_endpoint = get_s3_config(bucket)
s3_rw = S3ReaderWriter(
s3_ak, s3_sk, s3_endpoint, "auto", remove_non_official_s3_args(s3path)
)
may_range_params = parse_s3_range_params(s3path)
if may_range_params is None or 2 != len(may_range_params):
byte_start, byte_end = 0, None
else:
byte_start, byte_end = int(may_range_params[0]), int(may_range_params[1])
byte_end += byte_start - 1
return s3_rw.read_jsonl(
remove_non_official_s3_args(s3path),
byte_start,
byte_end,
AbsReaderWriter.MODE_BIN,
)
with open(local_json, "r", encoding="utf-8") as f:
for json_line in f:
jso = json_parse.loads(json_line)
s3_file_path = jso.get("file_location")
if s3_file_path is None:
s3_file_path = jso.get("path")
pdf_file_name = Path(s3_file_path).stem
pdf_data = read_s3_path(s3_file_path)
do_parse(
pdf_file_name,
pdf_data,
jso["doc_layout_result"],
method,
)
@cli.command()
@click.option(
"--pdf", type=click.Path(exists=True), required=True,
help='pdf 文件路径, 支持单个文件或文件列表, 文件列表需要以".list"结尾, 一行一个pdf文件路径')
@click.option("--model", type=click.Path(exists=True), help="模型的路径")
@click.option(
"--method",
type=parse_pdf_methods,
help="指定解析方法。txt: 文本型 pdf 解析方法, ocr: 光学识别解析 pdf, auto: 程序智能选择解析方法",
default="auto",
)
@click.option("--inside_model", type=click.BOOL, default=True, help="使用内置模型测试")
@click.option("--model_mode", type=click.STRING, default="full",
help="内置模型选择。lite: 快速解析,精度较低,full: 高精度解析,速度较慢")
def pdf_command(pdf, model, method, inside_model, model_mode):
model_config.__use_inside_model__ = inside_model
model_config.__model_mode__ = model_mode
def read_fn(path):
disk_rw = DiskReaderWriter(os.path.dirname(path))
return disk_rw.read(os.path.basename(path), AbsReaderWriter.MODE_BIN)
def get_model_json(model_path, doc_path):
# 这里处理pdf和模型相关的逻辑
if model_path is None:
file_name_without_extension, extension = os.path.splitext(doc_path)
if extension == ".pdf":
model_path = file_name_without_extension + ".json"
else:
raise Exception("pdf_path input error")
if not os.path.exists(model_path):
logger.warning(
f"not found json {model_path} existed"
)
# 本地无模型数据则调用内置paddle分析,先传空list,在内部识别到空list再调用paddle
model_json = "[]"
else:
model_json = read_fn(model_path).decode("utf-8")
else:
model_json = read_fn(model_path).decode("utf-8")
return model_json
def parse_doc(doc_path):
try:
file_name = str(Path(doc_path).stem)
pdf_data = read_fn(doc_path)
jso = json_parse.loads(get_model_json(model, doc_path))
do_parse(
file_name,
pdf_data,
jso,
method,
)
except Exception as e:
logger.exception(e)
if not pdf:
logger.error(f"Error: Missing argument '--pdf'.")
exit(f"Error: Missing argument '--pdf'.")
else:
'''适配多个文档的list文件输入'''
if pdf.endswith(".list"):
with open(pdf, "r") as f:
for line in f.readlines():
line = line.strip()
parse_doc(line)
else:
'''适配单个文档的输入'''
parse_doc(pdf)
if __name__ == "__main__":
"""
python magic_pdf/cli/magicpdf.py json-command --json s3://llm-pdf-text/pdf_ebook_and_paper/manual/v001/part-660407a28beb-000002.jsonl?bytes=0,63551
"""
cli()