Spaces:
Runtime error
Runtime error
File size: 1,446 Bytes
a925304 6f308c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 |
import gradio as gr
from transformers import pipeline
from PIL import Image
from PIL import UnidentifiedImageError
def sign_classifier(input_image):
try:
# Load the image
image = input_image
# Emotion classifier
sign_pipe = pipeline("image-classification", model="Marxulia/asl_aplhabet_img_classifier_v3")
sign_result = sign_pipe(image)
predicted_sign = sign_result[0]['label']
sign_confidence = sign_result[0]['score']
# Format the results
sign_output = f"Sign Prediction: {predicted_sign}\nConfidence: {sign_confidence}"
return sign_output
except UnidentifiedImageError:
return "Error: Invalid input image format."
# Load an example image (replace 'path/to/your/image.jpg' with your actual path)
example_image1 = Image.open('H3.jpg')
example_image2 = Image.open('B3.jpg')
# Create Gradio interface
input_image = gr.Image(type="pil", label="Upload Image")
output_sign = gr.Textbox(label="Sign Classifier")
# Provide a list of examples, where each element is a list with the input and output
examples = [[example_image1, "H Sign"],[example_image2, "B Sign"]] # Modify the output based on your image
# Include examples in the interface
interface = gr.Interface(fn=sign_classifier, inputs=input_image, outputs=[output_sign],
title="Image Classifier", description="Upload an image and translate the sign", examples=examples)
interface.launch(share=True,debug=True) |