Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
from PIL import Image | |
from PIL import UnidentifiedImageError | |
def sign_classifier(input_image): | |
try: | |
# Load the image | |
image = input_image | |
# Emotion classifier | |
sign_pipe = pipeline("image-classification", model="Marxulia/asl_aplhabet_img_classifier_v3") | |
sign_result = sign_pipe(image) | |
predicted_sign = sign_result[0]['label'] | |
sign_confidence = sign_result[0]['score'] | |
# Format the results | |
sign_output = f"Sign Prediction: {predicted_sign}\nConfidence: {sign_confidence}" | |
return sign_output | |
except UnidentifiedImageError: | |
return "Error: Invalid input image format." | |
# Load an example image (replace 'path/to/your/image.jpg' with your actual path) | |
example_image1 = Image.open('H3.jpg') | |
example_image2 = Image.open('B3.jpg') | |
# Create Gradio interface | |
input_image = gr.Image(type="pil", label="Upload Image") | |
output_sign = gr.Textbox(label="Sign Classifier") | |
# Provide a list of examples, where each element is a list with the input and output | |
examples = [[example_image1, "H Sign"],[example_image2, "B Sign"]] # Modify the output based on your image | |
# Include examples in the interface | |
interface = gr.Interface(fn=sign_classifier, inputs=input_image, outputs=[output_sign], | |
title="Image Classifier", description="Upload an image and translate the sign", examples=examples) | |
interface.launch(share=True,debug=True) |