File size: 4,885 Bytes
158d13b
 
 
 
44688fd
158d13b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44688fd
158d13b
 
 
44688fd
a67a4e8
b3c2a3b
44688fd
158d13b
44688fd
 
158d13b
 
 
 
 
2c46c5a
158d13b
 
 
 
 
 
 
 
 
2c46c5a
158d13b
aaaa64f
158d13b
 
 
 
 
2c46c5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import supervision as sv
import gradio as gr
from ultralytics import YOLO
import sahi
import numpy as np


# Images
sahi.utils.file.download_from_url(
    "https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/48174c7c26c2cbca52b084ebbb03d215/thumb.jpg",
    "f2.jpg",
)
sahi.utils.file.download_from_url(
    "https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/3d1f22e387164a6719995aa0d9dc16a1/thumb.jpg",
    "f3.jpg",
)




annotatorbbox = sv.BoxAnnotator()
annotatormask=sv.MaskAnnotator()


def yolov8_inference(
    image: gr.inputs.Image = None,
    conf_threshold: gr.inputs.Slider = 0.5,
    iou_threshold: gr.inputs.Slider = 0.45,
):

    image=image[:, :, ::-1].astype(np.uint8)
    model = YOLO("https://huggingface.co/spaces/devisionx/Second_demo/blob/main/best.pt")
    results = model(image,imgsz=320,conf=conf_threshold,iou=iou_threshold)[0]
    image=image[:, :, ::-1].astype(np.uint8)
    detections = sv.Detections.from_yolov8(results)
    annotated_image = annotatormask.annotate(scene=image, detections=detections)
    annotated_image = annotatorbbox.annotate(scene=annotated_image , detections=detections)




    return annotated_image
'''
image_input = gr.inputs.Image()  # Adjust the shape according to your requirements

inputs = [
    gr.inputs.Image(label="Input Image"),
    gr.Slider(
        minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold"
    ),
    gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"),
]
'''
outputs = gr.Image(type="filepath", label="Output Image")
title = "Fire Smoke Demo"
import os
examples = [
    ["f2.jpg", 0.25, 0.45],
    ["f3.jpg", 0.25, 0.45],
]
outputs_images = [
    ["1.jpg"], # First example: an output image for the cat example
    ["2.jpg"] # Second example: an output image for the dog example
    ,["3.jpg"]
]

readme_html = """
<html>
<head>
    <style>
        .description {
            margin: 20px;
            padding: 10px;
            border: 1px solid #ccc;
        }
    </style>
</head>
<body>
    <div class="description">
        <p><strong>More details:</strong></p>
        <p>We present a demo for performing object segmentation with training a Yolov8-seg on Fire and Smoke dataset. The model was trained on 141 training images and validated on 40 images.</p>
        <p><strong>Usage:</strong></p>
        <p>You can upload Fire-smoke images, and the demo will provide you with your segmented image.</p>
        <p><strong>Dataset:</strong></p>
        <p>This dataset comprises a total of 201 images, which are divided into three distinct sets for various purposes:</p>
        <ul>
            <li><strong>Training Set:</strong> It includes 141 images and is intended for training the model.</li>
            <li><strong>Validation Set:</strong> There are 40 images in the validation set, which is used for optimizing model parameters during development.</li>
            <li><strong>Test Set:</strong> This set consists of 20 images and serves as a separate evaluation dataset to assess the performance of trained models.</li>
        </ul>
        <p><strong>License:</strong> This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0).</p>
        <p>To access and download this dataset, please follow this link: <a href=" https://universe.roboflow.com/roboflow-universe-projects/fire-and-smoke-segmentation" target="_blank">Dataset Download</a></p>
        
        
</body>
</html>
"""
with gr.Blocks() as demo:
    gr.Markdown(
        """
        <div style="text-align: center;">
            <h1> Fire Smoke Demo</h1>
            Powered by <a href="https://Tuba.ai">Tuba</a>
        </div>
        """
    )


    # Define the input components and add them to the layout
    with gr.Row():
        image_input = gr.inputs.Image()
        
        
        outputs = gr.Image(type="filepath", label="Output Image")
        
    # Define the output component and add it to the layout
    with gr.Row():
        conf_slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" )
    with gr.Row():
        IOU_Slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold")
    
    
    

    button = gr.Button("Run")
    
        
    # Define the event listener that connects the input and output components and triggers the function
    button.click(fn=yolov8_inference, inputs=[image_input, conf_slider,IOU_Slider], outputs=outputs, api_name="yolov8_inference")
    
    gr.Examples(
            fn=yolov8_inference,
            examples=examples,
            inputs=[image_input, conf_slider,IOU_Slider],
            outputs=[outputs]
        )
    # gr.Examples(inputs=examples, outputs=outputs_images)
    # Add the description below the layout
    gr.Markdown(readme_html)
# Launch the app
demo.launch(share=False)