Spaces:
Sleeping
Sleeping
import supervision as sv | |
import gradio as gr | |
from ultralytics import YOLO | |
import sahi | |
import numpy as np | |
# Images | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/48174c7c26c2cbca52b084ebbb03d215/thumb.jpg", | |
"f2.jpg", | |
) | |
sahi.utils.file.download_from_url( | |
"https://transform.roboflow.com/zD7y6XOoQnh7WC160Ae7/3d1f22e387164a6719995aa0d9dc16a1/thumb.jpg", | |
"f3.jpg", | |
) | |
annotatorbbox = sv.BoxAnnotator() | |
annotatormask=sv.MaskAnnotator() | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
conf_threshold: gr.inputs.Slider = 0.5, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
image=image[:, :, ::-1].astype(np.uint8) | |
model = YOLO("https://huggingface.co/spaces/devisionx/Second_demo/blob/main/best.pt") | |
results = model(image,imgsz=320,conf=conf_threshold,iou=iou_threshold)[0] | |
image=image[:, :, ::-1].astype(np.uint8) | |
detections = sv.Detections.from_yolov8(results) | |
annotated_image = annotatormask.annotate(scene=image, detections=detections) | |
annotated_image = annotatorbbox.annotate(scene=annotated_image , detections=detections) | |
return annotated_image | |
''' | |
image_input = gr.inputs.Image() # Adjust the shape according to your requirements | |
inputs = [ | |
gr.inputs.Image(label="Input Image"), | |
gr.Slider( | |
minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" | |
), | |
gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold"), | |
] | |
''' | |
outputs = gr.Image(type="filepath", label="Output Image") | |
title = "Fire Smoke Demo" | |
import os | |
examples = [ | |
["f2.jpg", 0.25, 0.45], | |
["f3.jpg", 0.25, 0.45], | |
] | |
outputs_images = [ | |
["1.jpg"], # First example: an output image for the cat example | |
["2.jpg"] # Second example: an output image for the dog example | |
,["3.jpg"] | |
] | |
readme_html = """ | |
<html> | |
<head> | |
<style> | |
.description { | |
margin: 20px; | |
padding: 10px; | |
border: 1px solid #ccc; | |
} | |
</style> | |
</head> | |
<body> | |
<div class="description"> | |
<p><strong>More details:</strong></p> | |
<p>We present a demo for performing object segmentation with training a Yolov8-seg on Fire and Smoke dataset. The model was trained on 141 training images and validated on 40 images.</p> | |
<p><strong>Usage:</strong></p> | |
<p>You can upload Fire-smoke images, and the demo will provide you with your segmented image.</p> | |
<p><strong>Dataset:</strong></p> | |
<p>This dataset comprises a total of 201 images, which are divided into three distinct sets for various purposes:</p> | |
<ul> | |
<li><strong>Training Set:</strong> It includes 141 images and is intended for training the model.</li> | |
<li><strong>Validation Set:</strong> There are 40 images in the validation set, which is used for optimizing model parameters during development.</li> | |
<li><strong>Test Set:</strong> This set consists of 20 images and serves as a separate evaluation dataset to assess the performance of trained models.</li> | |
</ul> | |
<p><strong>License:</strong> This dataset is made available under the Creative Commons Attribution 4.0 International License (CC BY 4.0).</p> | |
<p>To access and download this dataset, please follow this link: <a href=" https://universe.roboflow.com/roboflow-universe-projects/fire-and-smoke-segmentation" target="_blank">Dataset Download</a></p> | |
</body> | |
</html> | |
""" | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
<div style="text-align: center;"> | |
<h1> Fire Smoke Demo</h1> | |
Powered by <a href="https://Tuba.ai">Tuba</a> | |
</div> | |
""" | |
) | |
# Define the input components and add them to the layout | |
with gr.Row(): | |
image_input = gr.inputs.Image() | |
outputs = gr.Image(type="filepath", label="Output Image") | |
# Define the output component and add it to the layout | |
with gr.Row(): | |
conf_slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.25, step=0.05, label="Confidence Threshold" ) | |
with gr.Row(): | |
IOU_Slider=gr.Slider(minimum=0.0, maximum=1.0, value=0.45, step=0.05, label="IOU Threshold") | |
button = gr.Button("Run") | |
# Define the event listener that connects the input and output components and triggers the function | |
button.click(fn=yolov8_inference, inputs=[image_input, conf_slider,IOU_Slider], outputs=outputs, api_name="yolov8_inference") | |
gr.Examples( | |
fn=yolov8_inference, | |
examples=examples, | |
inputs=[image_input, conf_slider,IOU_Slider], | |
outputs=[outputs] | |
) | |
# gr.Examples(inputs=examples, outputs=outputs_images) | |
# Add the description below the layout | |
gr.Markdown(readme_html) | |
# Launch the app | |
demo.launch(share=False) |