SecurityDemo / app.py
mkhodary101's picture
Update app.py
35960dd verified
raw
history blame
13.6 kB
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO
import spaces
import os
import logging
# Set up logging for Spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()] # Output to console (visible in Spaces logs)
)
logger = logging.getLogger(__name__)
class CrowdDetection:
def __init__(self, model_path="yolov8n.pt"):
logger.info(f"Initializing CrowdDetection with model: {model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
if not os.path.exists(model_path):
logger.info(f"Model {model_path} not found, downloading...")
self.model = YOLO("yolov8n.pt") # Downloads if not present
self.model.save(model_path)
else:
self.model = YOLO(model_path)
self.model.to(self.device)
logger.info("CrowdDetection model loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
raise
@spaces.GPU
def detect_crowd(self, video_path):
logger.info(f"Processing video for crowd detection: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
logger.error(f"Failed to open video: {video_path}")
raise ValueError(f"❌ Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
logger.debug(f"Video specs - FPS: {fps}, Width: {width}, Height: {height}")
output_path = "output_crowd.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
if not out.isOpened():
cap.release()
logger.error(f"Failed to initialize video writer for {output_path}")
raise ValueError(f"❌ Failed to initialize video writer")
CROWD_THRESHOLD = 10
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
results = self.model(frame)
person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0)
logger.debug(f"Frame {frame_count}: Detected {person_count} people")
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, "Person", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
out.write(frame)
cap.release()
out.release()
if frame_count == 0 or not os.path.exists(output_path):
logger.error(f"Processing failed: Frames processed: {frame_count}, Output exists: {os.path.exists(output_path)}")
raise ValueError("❌ Processing failed: No frames processed or output not created")
logger.info(f"Crowd detection completed, output saved to: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error in detect_crowd: {str(e)}")
raise
class PeopleTracking:
def __init__(self, yolo_model_path="yolov8n.pt"):
logger.info(f"Initializing PeopleTracking with model: {yolo_model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(yolo_model_path):
self.model = YOLO("yolov8n.pt")
self.model.save(yolo_model_path)
else:
self.model = YOLO(yolo_model_path)
self.model.to(self.device)
@spaces.GPU
def track_people(self, video_path):
logger.info(f"Tracking people in video: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"❌ Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = "output_tracking.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError(f"❌ Failed to initialize video writer")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
ids = result.boxes.id.cpu().numpy() if result.boxes.id is not None else np.arange(len(boxes))
for box, cls, obj_id in zip(boxes, classes, ids):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
out.write(frame)
cap.release()
out.release()
if not os.path.exists(output_path):
raise ValueError("❌ Processing failed")
return output_path
except Exception as e:
logger.error(f"Error in track_people: {str(e)}")
raise
class FallDetection:
def __init__(self, yolo_model_path="yolov8l.pt"):
logger.info(f"Initializing FallDetection with model: {yolo_model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(yolo_model_path):
self.model = YOLO("yolov8l.pt")
self.model.save(yolo_model_path)
else:
self.model = YOLO(yolo_model_path)
self.model.to(self.device)
@spaces.GPU
def detect_fall(self, video_path):
logger.info(f"Detecting falls in video: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"❌ Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = "output_fall.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError(f"❌ Failed to initialize video writer")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model(frame)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
width = x2 - x1
height = y2 - y1
aspect_ratio = width / height if height > 0 else float('inf')
if aspect_ratio > 0.55:
color = (0, 0, 255)
label = "FALL DETECTED"
else:
color = (0, 255, 0)
label = "Standing"
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
out.write(frame)
cap.release()
out.release()
if not os.path.exists(output_path):
raise ValueError("❌ Processing failed")
return output_path
except Exception as e:
logger.error(f"Error in detect_fall: {str(e)}")
raise
class FightDetection:
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
logger.info(f"Initializing FightDetection with model: {yolo_model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(yolo_model_path):
self.model = YOLO("yolov8n-pose.pt")
self.model.save(yolo_model_path)
else:
self.model = YOLO(yolo_model_path)
self.model.to(self.device)
@spaces.GPU
def detect_fight(self, video_path):
logger.info(f"Detecting fights in video: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"❌ Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = "output_fight.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError(f"❌ Failed to initialize video writer")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
fight_detected = False
person_count = 0
for result in results:
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
boxes = result.boxes.xyxy.cpu().numpy() if result.boxes else []
classes = result.boxes.cls.cpu().numpy() if result.boxes else []
for box, kp, cls in zip(boxes, keypoints, classes):
if int(cls) == 0:
person_count += 1
x1, y1, x2, y2 = map(int, box)
if len(kp) > 7 and (kp[5][1] < y1 + (y2 - y1) * 0.3 or kp[7][1] < y1 + (y2 - y1) * 0.3):
fight_detected = True
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255) if fight_detected else (0, 255, 0), 2)
label = "FIGHT DETECTED" if fight_detected else "Person"
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 0, 255) if fight_detected else (0, 255, 0), 2)
if fight_detected and person_count > 1:
cv2.putText(frame, "FIGHT ALERT!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
out.write(frame)
cap.release()
out.release()
if not os.path.exists(output_path):
raise ValueError("❌ Processing failed")
return output_path
except Exception as e:
logger.error(f"Error in detect_fight: {str(e)}")
raise
# Unified processing function with status output
def process_video(feature, video):
detectors = {
"Crowd Detection": CrowdDetection,
"People Tracking": PeopleTracking,
"Fall Detection": FallDetection,
"Fight Detection": FightDetection
}
try:
detector = detectors[feature]()
method_name = feature.lower().replace(" ", "_")
output_path = getattr(detector, method_name)(video)
return f"{feature} completed successfully", output_path
except Exception as e:
logger.error(f"Error processing video with {feature}: {str(e)}")
return f"Error: {str(e)}", None
# Gradio Interface with dual outputs
interface = gr.Interface(
fn=process_video,
inputs=[
gr.Dropdown(choices=["Crowd Detection", "People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
gr.Video(label="Upload Video")
],
outputs=[
gr.Textbox(label="Status"),
gr.Video(label="Processed Video")
],
title="YOLOv8 Multitask Video Processing",
description="Select a feature to process your video: Crowd Detection, People Tracking, Fall Detection, or Fight Detection."
)
if __name__ == "__main__":
interface.launch(debug=True)