Spaces:
Sleeping
Sleeping
File size: 13,605 Bytes
7d1f745 329c034 82ed089 aca5f43 35960dd 329c034 cdec70d 7a2e724 35960dd cdec70d 35960dd 7ef0fcc cdec70d 35960dd 7ef0fcc 35960dd 7ef0fcc 329c034 35960dd 329c034 aca5f43 329c034 35960dd aca5f43 35960dd 329c034 35960dd aca5f43 329c034 35960dd aca5f43 35960dd 329c034 35960dd aca5f43 329c034 35960dd aca5f43 35960dd 329c034 cdec70d 329c034 aca5f43 35960dd aca5f43 35960dd aca5f43 35960dd 329c034 35960dd 329c034 cdec70d 329c034 35960dd aca5f43 329c034 aca5f43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO
import spaces
import os
import logging
# Set up logging for Spaces
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[logging.StreamHandler()] # Output to console (visible in Spaces logs)
)
logger = logging.getLogger(__name__)
class CrowdDetection:
def __init__(self, model_path="yolov8n.pt"):
logger.info(f"Initializing CrowdDetection with model: {model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
if not os.path.exists(model_path):
logger.info(f"Model {model_path} not found, downloading...")
self.model = YOLO("yolov8n.pt") # Downloads if not present
self.model.save(model_path)
else:
self.model = YOLO(model_path)
self.model.to(self.device)
logger.info("CrowdDetection model loaded successfully")
except Exception as e:
logger.error(f"Failed to initialize model: {str(e)}")
raise
@spaces.GPU
def detect_crowd(self, video_path):
logger.info(f"Processing video for crowd detection: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
logger.error(f"Failed to open video: {video_path}")
raise ValueError(f"β Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
logger.debug(f"Video specs - FPS: {fps}, Width: {width}, Height: {height}")
output_path = "output_crowd.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
if not out.isOpened():
cap.release()
logger.error(f"Failed to initialize video writer for {output_path}")
raise ValueError(f"β Failed to initialize video writer")
CROWD_THRESHOLD = 10
frame_count = 0
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
results = self.model(frame)
person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0)
logger.debug(f"Frame {frame_count}: Detected {person_count} people")
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.putText(frame, "Person", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
out.write(frame)
cap.release()
out.release()
if frame_count == 0 or not os.path.exists(output_path):
logger.error(f"Processing failed: Frames processed: {frame_count}, Output exists: {os.path.exists(output_path)}")
raise ValueError("β Processing failed: No frames processed or output not created")
logger.info(f"Crowd detection completed, output saved to: {output_path}")
return output_path
except Exception as e:
logger.error(f"Error in detect_crowd: {str(e)}")
raise
class PeopleTracking:
def __init__(self, yolo_model_path="yolov8n.pt"):
logger.info(f"Initializing PeopleTracking with model: {yolo_model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(yolo_model_path):
self.model = YOLO("yolov8n.pt")
self.model.save(yolo_model_path)
else:
self.model = YOLO(yolo_model_path)
self.model.to(self.device)
@spaces.GPU
def track_people(self, video_path):
logger.info(f"Tracking people in video: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"β Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = "output_tracking.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError(f"β Failed to initialize video writer")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
ids = result.boxes.id.cpu().numpy() if result.boxes.id is not None else np.arange(len(boxes))
for box, cls, obj_id in zip(boxes, classes, ids):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
out.write(frame)
cap.release()
out.release()
if not os.path.exists(output_path):
raise ValueError("β Processing failed")
return output_path
except Exception as e:
logger.error(f"Error in track_people: {str(e)}")
raise
class FallDetection:
def __init__(self, yolo_model_path="yolov8l.pt"):
logger.info(f"Initializing FallDetection with model: {yolo_model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(yolo_model_path):
self.model = YOLO("yolov8l.pt")
self.model.save(yolo_model_path)
else:
self.model = YOLO(yolo_model_path)
self.model.to(self.device)
@spaces.GPU
def detect_fall(self, video_path):
logger.info(f"Detecting falls in video: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"β Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = "output_fall.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError(f"β Failed to initialize video writer")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model(frame)
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
classes = result.boxes.cls.cpu().numpy()
for box, cls in zip(boxes, classes):
if int(cls) == 0:
x1, y1, x2, y2 = map(int, box)
width = x2 - x1
height = y2 - y1
aspect_ratio = width / height if height > 0 else float('inf')
if aspect_ratio > 0.55:
color = (0, 0, 255)
label = "FALL DETECTED"
else:
color = (0, 255, 0)
label = "Standing"
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
out.write(frame)
cap.release()
out.release()
if not os.path.exists(output_path):
raise ValueError("β Processing failed")
return output_path
except Exception as e:
logger.error(f"Error in detect_fall: {str(e)}")
raise
class FightDetection:
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
logger.info(f"Initializing FightDetection with model: {yolo_model_path}")
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if not os.path.exists(yolo_model_path):
self.model = YOLO("yolov8n-pose.pt")
self.model.save(yolo_model_path)
else:
self.model = YOLO(yolo_model_path)
self.model.to(self.device)
@spaces.GPU
def detect_fight(self, video_path):
logger.info(f"Detecting fights in video: {video_path}")
try:
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"β Failed to open video: {video_path}")
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
output_path = "output_fight.mp4"
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
if not out.isOpened():
cap.release()
raise ValueError(f"β Failed to initialize video writer")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = self.model.track(frame, persist=True)
fight_detected = False
person_count = 0
for result in results:
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
boxes = result.boxes.xyxy.cpu().numpy() if result.boxes else []
classes = result.boxes.cls.cpu().numpy() if result.boxes else []
for box, kp, cls in zip(boxes, keypoints, classes):
if int(cls) == 0:
person_count += 1
x1, y1, x2, y2 = map(int, box)
if len(kp) > 7 and (kp[5][1] < y1 + (y2 - y1) * 0.3 or kp[7][1] < y1 + (y2 - y1) * 0.3):
fight_detected = True
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255) if fight_detected else (0, 255, 0), 2)
label = "FIGHT DETECTED" if fight_detected else "Person"
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
(0, 0, 255) if fight_detected else (0, 255, 0), 2)
if fight_detected and person_count > 1:
cv2.putText(frame, "FIGHT ALERT!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
out.write(frame)
cap.release()
out.release()
if not os.path.exists(output_path):
raise ValueError("β Processing failed")
return output_path
except Exception as e:
logger.error(f"Error in detect_fight: {str(e)}")
raise
# Unified processing function with status output
def process_video(feature, video):
detectors = {
"Crowd Detection": CrowdDetection,
"People Tracking": PeopleTracking,
"Fall Detection": FallDetection,
"Fight Detection": FightDetection
}
try:
detector = detectors[feature]()
method_name = feature.lower().replace(" ", "_")
output_path = getattr(detector, method_name)(video)
return f"{feature} completed successfully", output_path
except Exception as e:
logger.error(f"Error processing video with {feature}: {str(e)}")
return f"Error: {str(e)}", None
# Gradio Interface with dual outputs
interface = gr.Interface(
fn=process_video,
inputs=[
gr.Dropdown(choices=["Crowd Detection", "People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
gr.Video(label="Upload Video")
],
outputs=[
gr.Textbox(label="Status"),
gr.Video(label="Processed Video")
],
title="YOLOv8 Multitask Video Processing",
description="Select a feature to process your video: Crowd Detection, People Tracking, Fall Detection, or Fight Detection."
)
if __name__ == "__main__":
interface.launch(debug=True) |