Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,25 +5,22 @@ import numpy as np
|
|
5 |
import time
|
6 |
from ultralytics import YOLO
|
7 |
import spaces
|
8 |
-
|
9 |
-
@spaces.GPU
|
10 |
|
11 |
class CrowdDetection:
|
12 |
def __init__(self, model_path="yolov8n.pt"):
|
13 |
-
"""Initialize the YOLO model once
|
14 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
if not os.path.exists(model_path):
|
16 |
-
|
17 |
-
|
18 |
-
self.model = YOLO("yolov8n.pt") # This downloads the model automatically
|
19 |
-
self.model.save(model_path) # Save locally
|
20 |
else:
|
21 |
self.model = YOLO(model_path)
|
22 |
self.model.to(self.device)
|
23 |
|
24 |
@spaces.GPU
|
25 |
def detect_crowd(self, video_path):
|
26 |
-
"""Process video
|
27 |
cap = cv2.VideoCapture(video_path)
|
28 |
if not cap.isOpened():
|
29 |
raise ValueError(f"β Failed to open video: {video_path}")
|
@@ -35,10 +32,9 @@ class CrowdDetection:
|
|
35 |
output_path = "output_crowd.mp4"
|
36 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
37 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
38 |
-
|
39 |
if not out.isOpened():
|
40 |
cap.release()
|
41 |
-
raise ValueError(f"β Failed to initialize video writer
|
42 |
|
43 |
CROWD_THRESHOLD = 10
|
44 |
frame_count = 0
|
@@ -46,146 +42,125 @@ class CrowdDetection:
|
|
46 |
while cap.isOpened():
|
47 |
ret, frame = cap.read()
|
48 |
if not ret:
|
49 |
-
break
|
50 |
-
|
51 |
frame_count += 1
|
52 |
|
53 |
-
# Run YOLO inference on the frame
|
54 |
results = self.model(frame)
|
|
|
55 |
|
56 |
-
# Count detected persons
|
57 |
-
person_count = sum(
|
58 |
-
1 for result in results
|
59 |
-
for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0
|
60 |
-
)
|
61 |
-
|
62 |
-
# Draw bounding boxes
|
63 |
for result in results:
|
64 |
boxes = result.boxes.xyxy.cpu().numpy()
|
65 |
classes = result.boxes.cls.cpu().numpy()
|
66 |
-
|
67 |
for box, cls in zip(boxes, classes):
|
68 |
if int(cls) == 0: # Person class
|
69 |
x1, y1, x2, y2 = map(int, box)
|
70 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
71 |
-
cv2.putText(frame, "Person", (x1, y1 - 10),
|
72 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
73 |
|
74 |
-
# Display count on frame
|
75 |
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
|
76 |
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
77 |
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
|
78 |
-
|
79 |
out.write(frame)
|
80 |
|
81 |
cap.release()
|
82 |
out.release()
|
83 |
-
|
84 |
-
|
85 |
-
raise ValueError("β No frames were processed!")
|
86 |
-
|
87 |
-
if not os.path.exists(output_path):
|
88 |
-
raise FileNotFoundError(f"β Output video not found: {output_path}")
|
89 |
-
|
90 |
return output_path
|
91 |
|
92 |
-
# Define Gradio interface function
|
93 |
-
def process_video(video):
|
94 |
-
try:
|
95 |
-
detector = CrowdDetection() # Instantiate inside to avoid pickling
|
96 |
-
output_path = detector.detect_crowd(video)
|
97 |
-
return "Crowd detection complete!", output_path
|
98 |
-
except Exception as e:
|
99 |
-
return f"Error: {str(e)}", None
|
100 |
-
|
101 |
-
# Create Gradio interface
|
102 |
-
with gr.Blocks() as demo:
|
103 |
-
gr.Markdown("# Crowd Detection with YOLOv8")
|
104 |
-
gr.Markdown("Upload a video to detect people and get crowd alerts (threshold: 10 people)")
|
105 |
-
|
106 |
-
with gr.Row():
|
107 |
-
with gr.Column():
|
108 |
-
video_input = gr.Video(label="Upload Video")
|
109 |
-
submit_btn = gr.Button("Detect Crowd")
|
110 |
-
with gr.Column():
|
111 |
-
status_output = gr.Textbox(label="Status")
|
112 |
-
video_output = gr.Video(label="Result")
|
113 |
-
|
114 |
-
submit_btn.click(
|
115 |
-
fn=process_video,
|
116 |
-
inputs=[video_input],
|
117 |
-
outputs=[status_output, video_output]
|
118 |
-
)
|
119 |
-
|
120 |
-
demo.launch(debug=True)
|
121 |
-
|
122 |
-
|
123 |
class PeopleTracking:
|
124 |
def __init__(self, yolo_model_path="yolov8n.pt"):
|
125 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
def track_people(self, video_path):
|
129 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
output_path = "output_tracking.mp4"
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
|
|
135 |
while cap.isOpened():
|
136 |
ret, frame = cap.read()
|
137 |
if not ret:
|
138 |
break
|
139 |
-
|
140 |
results = self.model.track(frame, persist=True)
|
141 |
for result in results:
|
142 |
boxes = result.boxes.xyxy.cpu().numpy()
|
143 |
classes = result.boxes.cls.cpu().numpy()
|
144 |
-
ids = result.boxes.id.cpu().numpy() if
|
145 |
-
|
146 |
for box, cls, obj_id in zip(boxes, classes, ids):
|
147 |
if int(cls) == 0:
|
148 |
x1, y1, x2, y2 = map(int, box)
|
149 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
150 |
-
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10),
|
151 |
-
|
152 |
-
|
153 |
out.write(frame)
|
154 |
-
|
155 |
cap.release()
|
156 |
out.release()
|
|
|
|
|
157 |
return output_path
|
158 |
|
159 |
-
# Define Fall Detection
|
160 |
class FallDetection:
|
161 |
def __init__(self, yolo_model_path="yolov8l.pt"):
|
162 |
-
self.
|
163 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
164 |
def detect_fall(self, video_path):
|
165 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
output_path = "output_fall.mp4"
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
171 |
while cap.isOpened():
|
172 |
ret, frame = cap.read()
|
173 |
if not ret:
|
174 |
break
|
175 |
-
|
176 |
results = self.model(frame)
|
177 |
for result in results:
|
178 |
boxes = result.boxes.xyxy.cpu().numpy()
|
179 |
classes = result.boxes.cls.cpu().numpy()
|
180 |
-
|
181 |
for box, cls in zip(boxes, classes):
|
182 |
if int(cls) == 0:
|
183 |
x1, y1, x2, y2 = map(int, box)
|
184 |
width = x2 - x1
|
185 |
height = y2 - y1
|
186 |
-
aspect_ratio = width / height
|
187 |
-
|
188 |
-
if aspect_ratio > 0.55:
|
189 |
color = (0, 0, 255)
|
190 |
label = "FALL DETECTED"
|
191 |
else:
|
@@ -194,49 +169,77 @@ class FallDetection:
|
|
194 |
|
195 |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
196 |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
197 |
-
|
198 |
out.write(frame)
|
199 |
-
|
200 |
cap.release()
|
201 |
out.release()
|
|
|
|
|
202 |
return output_path
|
203 |
|
204 |
-
# Define Fight Detection
|
205 |
class FightDetection:
|
206 |
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
|
207 |
-
self.
|
208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
def detect_fight(self, video_path):
|
210 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
output_path = "output_fight.mp4"
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
|
|
216 |
while cap.isOpened():
|
217 |
ret, frame = cap.read()
|
218 |
if not ret:
|
219 |
break
|
220 |
-
|
221 |
results = self.model.track(frame, persist=True)
|
|
|
|
|
|
|
222 |
for result in results:
|
223 |
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
|
|
|
224 |
classes = result.boxes.cls.cpu().numpy() if result.boxes else []
|
225 |
-
|
226 |
-
for kp, cls in zip(keypoints, classes):
|
227 |
if int(cls) == 0:
|
228 |
-
|
229 |
-
x2, y2 = int
|
230 |
-
|
231 |
-
|
232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
out.write(frame)
|
234 |
-
|
235 |
cap.release()
|
236 |
out.release()
|
|
|
|
|
237 |
return output_path
|
238 |
|
239 |
-
#
|
240 |
def process_video(feature, video):
|
241 |
detectors = {
|
242 |
"Crowd Detection": CrowdDetection,
|
@@ -244,10 +247,13 @@ def process_video(feature, video):
|
|
244 |
"Fall Detection": FallDetection,
|
245 |
"Fight Detection": FightDetection
|
246 |
}
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
251 |
|
252 |
# Gradio Interface
|
253 |
interface = gr.Interface(
|
@@ -257,9 +263,9 @@ interface = gr.Interface(
|
|
257 |
gr.Video(label="Upload Video")
|
258 |
],
|
259 |
outputs=gr.Video(label="Processed Video"),
|
260 |
-
title="YOLOv8 Multitask Video Processing"
|
|
|
261 |
)
|
262 |
|
263 |
if __name__ == "__main__":
|
264 |
-
interface.launch(debug=True)
|
265 |
-
|
|
|
5 |
import time
|
6 |
from ultralytics import YOLO
|
7 |
import spaces
|
8 |
+
import os
|
|
|
9 |
|
10 |
class CrowdDetection:
|
11 |
def __init__(self, model_path="yolov8n.pt"):
|
12 |
+
"""Initialize the YOLO model once."""
|
13 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
if not os.path.exists(model_path):
|
15 |
+
self.model = YOLO("yolov8n.pt") # Downloads if not present
|
16 |
+
self.model.save(model_path)
|
|
|
|
|
17 |
else:
|
18 |
self.model = YOLO(model_path)
|
19 |
self.model.to(self.device)
|
20 |
|
21 |
@spaces.GPU
|
22 |
def detect_crowd(self, video_path):
|
23 |
+
"""Process video for crowd detection."""
|
24 |
cap = cv2.VideoCapture(video_path)
|
25 |
if not cap.isOpened():
|
26 |
raise ValueError(f"β Failed to open video: {video_path}")
|
|
|
32 |
output_path = "output_crowd.mp4"
|
33 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
34 |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
|
|
35 |
if not out.isOpened():
|
36 |
cap.release()
|
37 |
+
raise ValueError(f"β Failed to initialize video writer")
|
38 |
|
39 |
CROWD_THRESHOLD = 10
|
40 |
frame_count = 0
|
|
|
42 |
while cap.isOpened():
|
43 |
ret, frame = cap.read()
|
44 |
if not ret:
|
45 |
+
break
|
|
|
46 |
frame_count += 1
|
47 |
|
|
|
48 |
results = self.model(frame)
|
49 |
+
person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0)
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
for result in results:
|
52 |
boxes = result.boxes.xyxy.cpu().numpy()
|
53 |
classes = result.boxes.cls.cpu().numpy()
|
|
|
54 |
for box, cls in zip(boxes, classes):
|
55 |
if int(cls) == 0: # Person class
|
56 |
x1, y1, x2, y2 = map(int, box)
|
57 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
58 |
+
cv2.putText(frame, "Person", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
|
|
59 |
|
|
|
60 |
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
|
61 |
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
62 |
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
|
|
|
63 |
out.write(frame)
|
64 |
|
65 |
cap.release()
|
66 |
out.release()
|
67 |
+
if frame_count == 0 or not os.path.exists(output_path):
|
68 |
+
raise ValueError("β Processing failed")
|
|
|
|
|
|
|
|
|
|
|
69 |
return output_path
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
class PeopleTracking:
|
72 |
def __init__(self, yolo_model_path="yolov8n.pt"):
|
73 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
74 |
+
if not os.path.exists(yolo_model_path):
|
75 |
+
self.model = YOLO("yolov8n.pt")
|
76 |
+
self.model.save(yolo_model_path)
|
77 |
+
else:
|
78 |
+
self.model = YOLO(yolo_model_path)
|
79 |
+
self.model.to(self.device)
|
80 |
+
|
81 |
+
@spaces.GPU
|
82 |
def track_people(self, video_path):
|
83 |
cap = cv2.VideoCapture(video_path)
|
84 |
+
if not cap.isOpened():
|
85 |
+
raise ValueError(f"β Failed to open video: {video_path}")
|
86 |
+
|
87 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
88 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
89 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
90 |
output_path = "output_tracking.mp4"
|
91 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
92 |
+
if not out.isOpened():
|
93 |
+
cap.release()
|
94 |
+
raise ValueError(f"β Failed to initialize video writer")
|
95 |
+
|
96 |
while cap.isOpened():
|
97 |
ret, frame = cap.read()
|
98 |
if not ret:
|
99 |
break
|
100 |
+
|
101 |
results = self.model.track(frame, persist=True)
|
102 |
for result in results:
|
103 |
boxes = result.boxes.xyxy.cpu().numpy()
|
104 |
classes = result.boxes.cls.cpu().numpy()
|
105 |
+
ids = result.boxes.id.cpu().numpy() if result.boxes.id is not None else np.arange(len(boxes))
|
106 |
+
|
107 |
for box, cls, obj_id in zip(boxes, classes, ids):
|
108 |
if int(cls) == 0:
|
109 |
x1, y1, x2, y2 = map(int, box)
|
110 |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
111 |
+
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)
|
112 |
+
|
|
|
113 |
out.write(frame)
|
114 |
+
|
115 |
cap.release()
|
116 |
out.release()
|
117 |
+
if not os.path.exists(output_path):
|
118 |
+
raise ValueError("β Processing failed")
|
119 |
return output_path
|
120 |
|
|
|
121 |
class FallDetection:
|
122 |
def __init__(self, yolo_model_path="yolov8l.pt"):
|
123 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
124 |
+
if not os.path.exists(yolo_model_path):
|
125 |
+
self.model = YOLO("yolov8l.pt")
|
126 |
+
self.model.save(yolo_model_path)
|
127 |
+
else:
|
128 |
+
self.model = YOLO(yolo_model_path)
|
129 |
+
self.model.to(self.device)
|
130 |
+
|
131 |
+
@spaces.GPU
|
132 |
def detect_fall(self, video_path):
|
133 |
cap = cv2.VideoCapture(video_path)
|
134 |
+
if not cap.isOpened():
|
135 |
+
raise ValueError(f"β Failed to open video: {video_path}")
|
136 |
+
|
137 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
138 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
139 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
140 |
output_path = "output_fall.mp4"
|
141 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
142 |
+
if not out.isOpened():
|
143 |
+
cap.release()
|
144 |
+
raise ValueError(f"β Failed to initialize video writer")
|
145 |
+
|
146 |
while cap.isOpened():
|
147 |
ret, frame = cap.read()
|
148 |
if not ret:
|
149 |
break
|
150 |
+
|
151 |
results = self.model(frame)
|
152 |
for result in results:
|
153 |
boxes = result.boxes.xyxy.cpu().numpy()
|
154 |
classes = result.boxes.cls.cpu().numpy()
|
155 |
+
|
156 |
for box, cls in zip(boxes, classes):
|
157 |
if int(cls) == 0:
|
158 |
x1, y1, x2, y2 = map(int, box)
|
159 |
width = x2 - x1
|
160 |
height = y2 - y1
|
161 |
+
aspect_ratio = width / height if height > 0 else float('inf')
|
162 |
+
|
163 |
+
if aspect_ratio > 0.55: # Person lying down
|
164 |
color = (0, 0, 255)
|
165 |
label = "FALL DETECTED"
|
166 |
else:
|
|
|
169 |
|
170 |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
|
171 |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
172 |
+
|
173 |
out.write(frame)
|
174 |
+
|
175 |
cap.release()
|
176 |
out.release()
|
177 |
+
if not os.path.exists(output_path):
|
178 |
+
raise ValueError("β Processing failed")
|
179 |
return output_path
|
180 |
|
|
|
181 |
class FightDetection:
|
182 |
def __init__(self, yolo_model_path="yolov8n-pose.pt"):
|
183 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
184 |
+
if not os.path.exists(yolo_model_path):
|
185 |
+
self.model = YOLO("yolov8n-pose.pt")
|
186 |
+
self.model.save(yolo_model_path)
|
187 |
+
else:
|
188 |
+
self.model = YOLO(yolo_model_path)
|
189 |
+
self.model.to(self.device)
|
190 |
+
|
191 |
+
@spaces.GPU
|
192 |
def detect_fight(self, video_path):
|
193 |
cap = cv2.VideoCapture(video_path)
|
194 |
+
if not cap.isOpened():
|
195 |
+
raise ValueError(f"β Failed to open video: {video_path}")
|
196 |
+
|
197 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
198 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
199 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
200 |
output_path = "output_fight.mp4"
|
201 |
+
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
|
202 |
+
if not out.isOpened():
|
203 |
+
cap.release()
|
204 |
+
raise ValueError(f"β Failed to initialize video writer")
|
205 |
+
|
206 |
while cap.isOpened():
|
207 |
ret, frame = cap.read()
|
208 |
if not ret:
|
209 |
break
|
210 |
+
|
211 |
results = self.model.track(frame, persist=True)
|
212 |
+
fight_detected = False
|
213 |
+
person_count = 0
|
214 |
+
|
215 |
for result in results:
|
216 |
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
|
217 |
+
boxes = result.boxes.xyxy.cpu().numpy() if result.boxes else []
|
218 |
classes = result.boxes.cls.cpu().numpy() if result.boxes else []
|
219 |
+
|
220 |
+
for box, kp, cls in zip(boxes, keypoints, classes):
|
221 |
if int(cls) == 0:
|
222 |
+
person_count += 1
|
223 |
+
x1, y1, x2, y2 = map(int, box)
|
224 |
+
# Simple fight detection: check if arms (keypoints 5, 7) are raised high
|
225 |
+
if len(kp) > 7 and (kp[5][1] < y1 + (y2 - y1) * 0.3 or kp[7][1] < y1 + (y2 - y1) * 0.3):
|
226 |
+
fight_detected = True
|
227 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255) if fight_detected else (0, 255, 0), 2)
|
228 |
+
label = "FIGHT DETECTED" if fight_detected else "Person"
|
229 |
+
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
|
230 |
+
(0, 0, 255) if fight_detected else (0, 255, 0), 2)
|
231 |
+
|
232 |
+
if fight_detected and person_count > 1:
|
233 |
+
cv2.putText(frame, "FIGHT ALERT!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
|
234 |
out.write(frame)
|
235 |
+
|
236 |
cap.release()
|
237 |
out.release()
|
238 |
+
if not os.path.exists(output_path):
|
239 |
+
raise ValueError("β Processing failed")
|
240 |
return output_path
|
241 |
|
242 |
+
# Unified processing function
|
243 |
def process_video(feature, video):
|
244 |
detectors = {
|
245 |
"Crowd Detection": CrowdDetection,
|
|
|
247 |
"Fall Detection": FallDetection,
|
248 |
"Fight Detection": FightDetection
|
249 |
}
|
250 |
+
try:
|
251 |
+
detector = detectors[feature]()
|
252 |
+
method_name = feature.lower().replace(" ", "_") # Match method names exactly
|
253 |
+
output_path = getattr(detector, method_name)(video)
|
254 |
+
return output_path
|
255 |
+
except Exception as e:
|
256 |
+
raise ValueError(f"Error processing video: {str(e)}")
|
257 |
|
258 |
# Gradio Interface
|
259 |
interface = gr.Interface(
|
|
|
263 |
gr.Video(label="Upload Video")
|
264 |
],
|
265 |
outputs=gr.Video(label="Processed Video"),
|
266 |
+
title="YOLOv8 Multitask Video Processing",
|
267 |
+
description="Select a feature to process your video: Crowd Detection, People Tracking, Fall Detection, or Fight Detection."
|
268 |
)
|
269 |
|
270 |
if __name__ == "__main__":
|
271 |
+
interface.launch(debug=True)
|
|