Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import cv2 | |
import numpy as np | |
import time | |
from ultralytics import YOLO | |
import spaces | |
import os | |
import logging | |
class CrowdDetection: | |
def __init__(self, model_path="yolov8n.pt"): | |
logger.info(f"Initializing CrowdDetection with model: {model_path}") | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
try: | |
if not os.path.exists(model_path): | |
logger.info(f"Model {model_path} not found, downloading...") | |
self.model = YOLO("yolov8n.pt") # Downloads if not present | |
self.model.save(model_path) | |
else: | |
self.model = YOLO(model_path) | |
self.model.to(self.device) | |
logger.info("CrowdDetection model loaded successfully") | |
except Exception as e: | |
logger.error(f"Failed to initialize model: {str(e)}") | |
raise | |
def detect_crowd(self, video_path): | |
logger.info(f"Processing video for crowd detection: {video_path}") | |
try: | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
logger.error(f"Failed to open video: {video_path}") | |
raise ValueError(f"β Failed to open video: {video_path}") | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
logger.debug(f"Video specs - FPS: {fps}, Width: {width}, Height: {height}") | |
output_path = "output_crowd.mp4" | |
fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height)) | |
if not out.isOpened(): | |
cap.release() | |
logger.error(f"Failed to initialize video writer for {output_path}") | |
raise ValueError(f"β Failed to initialize video writer") | |
CROWD_THRESHOLD = 10 | |
frame_count = 0 | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
frame_count += 1 | |
results = self.model(frame) | |
person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0) | |
logger.debug(f"Frame {frame_count}: Detected {person_count} people") | |
for result in results: | |
boxes = result.boxes.xyxy.cpu().numpy() | |
classes = result.boxes.cls.cpu().numpy() | |
for box, cls in zip(boxes, classes): | |
if int(cls) == 0: | |
x1, y1, x2, y2 = map(int, box) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2) | |
cv2.putText(frame, "Person", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2) | |
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}" | |
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, | |
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2) | |
out.write(frame) | |
cap.release() | |
out.release() | |
if frame_count == 0 or not os.path.exists(output_path): | |
logger.error(f"Processing failed: Frames processed: {frame_count}, Output exists: {os.path.exists(output_path)}") | |
raise ValueError("β Processing failed: No frames processed or output not created") | |
logger.info(f"Crowd detection completed, output saved to: {output_path}") | |
return output_path | |
except Exception as e: | |
logger.error(f"Error in detect_crowd: {str(e)}") | |
raise | |
class PeopleTracking: | |
def __init__(self, yolo_model_path="yolov8n.pt"): | |
logger.info(f"Initializing PeopleTracking with model: {yolo_model_path}") | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if not os.path.exists(yolo_model_path): | |
self.model = YOLO("yolov8n.pt") | |
self.model.save(yolo_model_path) | |
else: | |
self.model = YOLO(yolo_model_path) | |
self.model.to(self.device) | |
def track_people(self, video_path): | |
logger.info(f"Tracking people in video: {video_path}") | |
try: | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
raise ValueError(f"β Failed to open video: {video_path}") | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
output_path = "output_tracking.mp4" | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) | |
if not out.isOpened(): | |
cap.release() | |
raise ValueError(f"β Failed to initialize video writer") | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = self.model.track(frame, persist=True) | |
for result in results: | |
boxes = result.boxes.xyxy.cpu().numpy() | |
classes = result.boxes.cls.cpu().numpy() | |
ids = result.boxes.id.cpu().numpy() if result.boxes.id is not None else np.arange(len(boxes)) | |
for box, cls, obj_id in zip(boxes, classes, ids): | |
if int(cls) == 0: | |
x1, y1, x2, y2 = map(int, box) | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2) | |
cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2) | |
out.write(frame) | |
cap.release() | |
out.release() | |
if not os.path.exists(output_path): | |
raise ValueError("β Processing failed") | |
return output_path | |
except Exception as e: | |
logger.error(f"Error in track_people: {str(e)}") | |
raise | |
class FallDetection: | |
def __init__(self, yolo_model_path="yolov8l.pt"): | |
logger.info(f"Initializing FallDetection with model: {yolo_model_path}") | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if not os.path.exists(yolo_model_path): | |
self.model = YOLO("yolov8l.pt") | |
self.model.save(yolo_model_path) | |
else: | |
self.model = YOLO(yolo_model_path) | |
self.model.to(self.device) | |
def detect_fall(self, video_path): | |
logger.info(f"Detecting falls in video: {video_path}") | |
try: | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
raise ValueError(f"β Failed to open video: {video_path}") | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
output_path = "output_fall.mp4" | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) | |
if not out.isOpened(): | |
cap.release() | |
raise ValueError(f"β Failed to initialize video writer") | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = self.model(frame) | |
for result in results: | |
boxes = result.boxes.xyxy.cpu().numpy() | |
classes = result.boxes.cls.cpu().numpy() | |
for box, cls in zip(boxes, classes): | |
if int(cls) == 0: | |
x1, y1, x2, y2 = map(int, box) | |
width = x2 - x1 | |
height = y2 - y1 | |
aspect_ratio = width / height if height > 0 else float('inf') | |
if aspect_ratio > 0.55: | |
color = (0, 0, 255) | |
label = "FALL DETECTED" | |
else: | |
color = (0, 255, 0) | |
label = "Standing" | |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2) | |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) | |
out.write(frame) | |
cap.release() | |
out.release() | |
if not os.path.exists(output_path): | |
raise ValueError("β Processing failed") | |
return output_path | |
except Exception as e: | |
logger.error(f"Error in detect_fall: {str(e)}") | |
raise | |
class FightDetection: | |
def __init__(self, yolo_model_path="yolov8n-pose.pt"): | |
logger.info(f"Initializing FightDetection with model: {yolo_model_path}") | |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
if not os.path.exists(yolo_model_path): | |
self.model = YOLO("yolov8n-pose.pt") | |
self.model.save(yolo_model_path) | |
else: | |
self.model = YOLO(yolo_model_path) | |
self.model.to(self.device) | |
def detect_fight(self, video_path): | |
logger.info(f"Detecting fights in video: {video_path}") | |
try: | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
raise ValueError(f"β Failed to open video: {video_path}") | |
fps = int(cap.get(cv2.CAP_PROP_FPS)) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) | |
output_path = "output_fight.mp4" | |
out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height)) | |
if not out.isOpened(): | |
cap.release() | |
raise ValueError(f"β Failed to initialize video writer") | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break | |
results = self.model.track(frame, persist=True) | |
fight_detected = False | |
person_count = 0 | |
for result in results: | |
keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else [] | |
boxes = result.boxes.xyxy.cpu().numpy() if result.boxes else [] | |
classes = result.boxes.cls.cpu().numpy() if result.boxes else [] | |
for box, kp, cls in zip(boxes, keypoints, classes): | |
if int(cls) == 0: | |
person_count += 1 | |
x1, y1, x2, y2 = map(int, box) | |
if len(kp) > 7 and (kp[5][1] < y1 + (y2 - y1) * 0.3 or kp[7][1] < y1 + (y2 - y1) * 0.3): | |
fight_detected = True | |
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255) if fight_detected else (0, 255, 0), 2) | |
label = "FIGHT DETECTED" if fight_detected else "Person" | |
cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, | |
(0, 0, 255) if fight_detected else (0, 255, 0), 2) | |
if fight_detected and person_count > 1: | |
cv2.putText(frame, "FIGHT ALERT!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2) | |
out.write(frame) | |
cap.release() | |
out.release() | |
if not os.path.exists(output_path): | |
raise ValueError("β Processing failed") | |
return output_path | |
except Exception as e: | |
logger.error(f"Error in detect_fight: {str(e)}") | |
raise | |
# Unified processing function with status output | |
def process_video(feature, video): | |
detectors = { | |
"Crowd Detection": CrowdDetection, | |
"People Tracking": PeopleTracking, | |
"Fall Detection": FallDetection, | |
"Fight Detection": FightDetection | |
} | |
try: | |
detector = detectors[feature]() | |
method_name = feature.lower().replace(" ", "_") | |
output_path = getattr(detector, method_name)(video) | |
return f"{feature} completed successfully", output_path | |
except Exception as e: | |
logger.error(f"Error processing video with {feature}: {str(e)}") | |
return f"Error: {str(e)}", None | |
# Gradio Interface with dual outputs | |
interface = gr.Interface( | |
fn=process_video, | |
inputs=[ | |
gr.Dropdown(choices=["Crowd Detection", "People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"), | |
gr.Video(label="Upload Video") | |
], | |
outputs=[ | |
gr.Textbox(label="Status"), | |
gr.Video(label="Processed Video") | |
], | |
title="YOLOv8 Multitask Video Processing", | |
description="Select a feature to process your video: Crowd Detection, People Tracking, Fall Detection, or Fight Detection." | |
) | |
if __name__ == "__main__": | |
interface.launch(debug=True) |