File size: 13,299 Bytes
7d1f745
329c034
 
 
 
 
82ed089
aca5f43
35960dd
92d4b56
35960dd
cdec70d
7a2e724
35960dd
cdec70d
35960dd
 
 
 
 
 
 
 
 
 
 
 
7ef0fcc
cdec70d
35960dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ef0fcc
35960dd
 
 
 
 
 
 
 
 
7ef0fcc
329c034
 
35960dd
329c034
aca5f43
 
 
 
 
 
 
329c034
35960dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca5f43
35960dd
 
 
 
 
 
 
 
329c034
 
 
35960dd
aca5f43
 
 
 
 
 
 
 
329c034
35960dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca5f43
35960dd
 
 
 
 
 
 
329c034
 
 
35960dd
aca5f43
 
 
 
 
 
 
 
329c034
35960dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca5f43
35960dd
 
 
 
 
 
 
 
 
329c034
 
cdec70d
329c034
 
 
 
aca5f43
 
35960dd
aca5f43
35960dd
aca5f43
35960dd
 
329c034
35960dd
329c034
 
 
cdec70d
329c034
 
35960dd
 
 
 
aca5f43
 
329c034
 
 
aca5f43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import gradio as gr
import torch
import cv2
import numpy as np
import time
from ultralytics import YOLO
import spaces
import os
import logging
@spaces.GPU

class CrowdDetection:
    def __init__(self, model_path="yolov8n.pt"):
        logger.info(f"Initializing CrowdDetection with model: {model_path}")
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        try:
            if not os.path.exists(model_path):
                logger.info(f"Model {model_path} not found, downloading...")
                self.model = YOLO("yolov8n.pt")  # Downloads if not present
                self.model.save(model_path)
            else:
                self.model = YOLO(model_path)
            self.model.to(self.device)
            logger.info("CrowdDetection model loaded successfully")
        except Exception as e:
            logger.error(f"Failed to initialize model: {str(e)}")
            raise

    def detect_crowd(self, video_path):
        logger.info(f"Processing video for crowd detection: {video_path}")
        try:
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                logger.error(f"Failed to open video: {video_path}")
                raise ValueError(f"❌ Failed to open video: {video_path}")

            fps = int(cap.get(cv2.CAP_PROP_FPS))
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            logger.debug(f"Video specs - FPS: {fps}, Width: {width}, Height: {height}")

            output_path = "output_crowd.mp4"
            fourcc = cv2.VideoWriter_fourcc(*"mp4v")
            out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
            if not out.isOpened():
                cap.release()
                logger.error(f"Failed to initialize video writer for {output_path}")
                raise ValueError(f"❌ Failed to initialize video writer")

            CROWD_THRESHOLD = 10
            frame_count = 0

            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break
                frame_count += 1

                results = self.model(frame)
                person_count = sum(1 for result in results for cls in result.boxes.cls.cpu().numpy() if int(cls) == 0)
                logger.debug(f"Frame {frame_count}: Detected {person_count} people")

                for result in results:
                    boxes = result.boxes.xyxy.cpu().numpy()
                    classes = result.boxes.cls.cpu().numpy()
                    for box, cls in zip(boxes, classes):
                        if int(cls) == 0:
                            x1, y1, x2, y2 = map(int, box)
                            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
                            cv2.putText(frame, "Person", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

                alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
                cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
                            (0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
                out.write(frame)

            cap.release()
            out.release()
            if frame_count == 0 or not os.path.exists(output_path):
                logger.error(f"Processing failed: Frames processed: {frame_count}, Output exists: {os.path.exists(output_path)}")
                raise ValueError("❌ Processing failed: No frames processed or output not created")
            logger.info(f"Crowd detection completed, output saved to: {output_path}")
            return output_path
        except Exception as e:
            logger.error(f"Error in detect_crowd: {str(e)}")
            raise

class PeopleTracking:
    def __init__(self, yolo_model_path="yolov8n.pt"):
        logger.info(f"Initializing PeopleTracking with model: {yolo_model_path}")
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if not os.path.exists(yolo_model_path):
            self.model = YOLO("yolov8n.pt")
            self.model.save(yolo_model_path)
        else:
            self.model = YOLO(yolo_model_path)
        self.model.to(self.device)

    def track_people(self, video_path):
        logger.info(f"Tracking people in video: {video_path}")
        try:
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                raise ValueError(f"❌ Failed to open video: {video_path}")

            fps = int(cap.get(cv2.CAP_PROP_FPS))
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            output_path = "output_tracking.mp4"
            out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
            if not out.isOpened():
                cap.release()
                raise ValueError(f"❌ Failed to initialize video writer")

            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break

                results = self.model.track(frame, persist=True)
                for result in results:
                    boxes = result.boxes.xyxy.cpu().numpy()
                    classes = result.boxes.cls.cpu().numpy()
                    ids = result.boxes.id.cpu().numpy() if result.boxes.id is not None else np.arange(len(boxes))

                    for box, cls, obj_id in zip(boxes, classes, ids):
                        if int(cls) == 0:
                            x1, y1, x2, y2 = map(int, box)
                            cv2.rectangle(frame, (x1, y1), (x2, y2), (255, 0, 0), 2)
                            cv2.putText(frame, f"ID {int(obj_id)}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 0, 0), 2)

                out.write(frame)

            cap.release()
            out.release()
            if not os.path.exists(output_path):
                raise ValueError("❌ Processing failed")
            return output_path
        except Exception as e:
            logger.error(f"Error in track_people: {str(e)}")
            raise

class FallDetection:
    def __init__(self, yolo_model_path="yolov8l.pt"):
        logger.info(f"Initializing FallDetection with model: {yolo_model_path}")
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if not os.path.exists(yolo_model_path):
            self.model = YOLO("yolov8l.pt")
            self.model.save(yolo_model_path)
        else:
            self.model = YOLO(yolo_model_path)
        self.model.to(self.device)

    def detect_fall(self, video_path):
        logger.info(f"Detecting falls in video: {video_path}")
        try:
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                raise ValueError(f"❌ Failed to open video: {video_path}")

            fps = int(cap.get(cv2.CAP_PROP_FPS))
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            output_path = "output_fall.mp4"
            out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
            if not out.isOpened():
                cap.release()
                raise ValueError(f"❌ Failed to initialize video writer")

            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break

                results = self.model(frame)
                for result in results:
                    boxes = result.boxes.xyxy.cpu().numpy()
                    classes = result.boxes.cls.cpu().numpy()

                    for box, cls in zip(boxes, classes):
                        if int(cls) == 0:
                            x1, y1, x2, y2 = map(int, box)
                            width = x2 - x1
                            height = y2 - y1
                            aspect_ratio = width / height if height > 0 else float('inf')

                            if aspect_ratio > 0.55:
                                color = (0, 0, 255)
                                label = "FALL DETECTED"
                            else:
                                color = (0, 255, 0)
                                label = "Standing"
                            
                            cv2.rectangle(frame, (x1, y1), (x2, y2), color, 2)
                            cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)

                out.write(frame)

            cap.release()
            out.release()
            if not os.path.exists(output_path):
                raise ValueError("❌ Processing failed")
            return output_path
        except Exception as e:
            logger.error(f"Error in detect_fall: {str(e)}")
            raise

class FightDetection:
    def __init__(self, yolo_model_path="yolov8n-pose.pt"):
        logger.info(f"Initializing FightDetection with model: {yolo_model_path}")
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        if not os.path.exists(yolo_model_path):
            self.model = YOLO("yolov8n-pose.pt")
            self.model.save(yolo_model_path)
        else:
            self.model = YOLO(yolo_model_path)
        self.model.to(self.device)

    def detect_fight(self, video_path):
        logger.info(f"Detecting fights in video: {video_path}")
        try:
            cap = cv2.VideoCapture(video_path)
            if not cap.isOpened():
                raise ValueError(f"❌ Failed to open video: {video_path}")

            fps = int(cap.get(cv2.CAP_PROP_FPS))
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            output_path = "output_fight.mp4"
            out = cv2.VideoWriter(output_path, cv2.VideoWriter_fourcc(*"mp4v"), fps, (width, height))
            if not out.isOpened():
                cap.release()
                raise ValueError(f"❌ Failed to initialize video writer")

            while cap.isOpened():
                ret, frame = cap.read()
                if not ret:
                    break

                results = self.model.track(frame, persist=True)
                fight_detected = False
                person_count = 0

                for result in results:
                    keypoints = result.keypoints.xy.cpu().numpy() if result.keypoints else []
                    boxes = result.boxes.xyxy.cpu().numpy() if result.boxes else []
                    classes = result.boxes.cls.cpu().numpy() if result.boxes else []

                    for box, kp, cls in zip(boxes, keypoints, classes):
                        if int(cls) == 0:
                            person_count += 1
                            x1, y1, x2, y2 = map(int, box)
                            if len(kp) > 7 and (kp[5][1] < y1 + (y2 - y1) * 0.3 or kp[7][1] < y1 + (y2 - y1) * 0.3):
                                fight_detected = True
                            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 0, 255) if fight_detected else (0, 255, 0), 2)
                            label = "FIGHT DETECTED" if fight_detected else "Person"
                            cv2.putText(frame, label, (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, 
                                        (0, 0, 255) if fight_detected else (0, 255, 0), 2)

                if fight_detected and person_count > 1:
                    cv2.putText(frame, "FIGHT ALERT!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
                out.write(frame)

            cap.release()
            out.release()
            if not os.path.exists(output_path):
                raise ValueError("❌ Processing failed")
            return output_path
        except Exception as e:
            logger.error(f"Error in detect_fight: {str(e)}")
            raise

# Unified processing function with status output
def process_video(feature, video):
    detectors = {
        "Crowd Detection": CrowdDetection,
        "People Tracking": PeopleTracking,
        "Fall Detection": FallDetection,
        "Fight Detection": FightDetection
    }
    try:
        detector = detectors[feature]()
        method_name = feature.lower().replace(" ", "_")
        output_path = getattr(detector, method_name)(video)
        return f"{feature} completed successfully", output_path
    except Exception as e:
        logger.error(f"Error processing video with {feature}: {str(e)}")
        return f"Error: {str(e)}", None

# Gradio Interface with dual outputs
interface = gr.Interface(
    fn=process_video,
    inputs=[
        gr.Dropdown(choices=["Crowd Detection", "People Tracking", "Fall Detection", "Fight Detection"], label="Select Feature"),
        gr.Video(label="Upload Video")
    ],
    outputs=[
        gr.Textbox(label="Status"),
        gr.Video(label="Processed Video")
    ],
    title="YOLOv8 Multitask Video Processing",
    description="Select a feature to process your video: Crowd Detection, People Tracking, Fall Detection, or Fight Detection."
)

if __name__ == "__main__":
    interface.launch(debug=True)