Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,107 +1,93 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import cv2
|
|
|
4 |
import os
|
|
|
5 |
from ultralytics import YOLO
|
6 |
-
import spaces
|
7 |
-
|
8 |
-
@spaces.GPU # Ensures GPU is allocated for this function
|
9 |
-
|
10 |
-
class CrowdDetection:
|
11 |
-
def __init__(self, yolo_model_path="yolov8n.pt", crowd_threshold=10):
|
12 |
-
# Determine the best available device
|
13 |
-
if torch.cuda.is_available():
|
14 |
-
self.device = torch.device("cuda")
|
15 |
-
print(f"Using CUDA Device: {torch.cuda.get_device_name(0)}")
|
16 |
-
else:
|
17 |
-
self.device = torch.device("cpu")
|
18 |
-
print("Using CPU as no CUDA device is available")
|
19 |
-
|
20 |
-
try:
|
21 |
-
# Load the YOLO model on the selected device
|
22 |
-
self.model = YOLO(yolo_model_path).to(self.device)
|
23 |
-
except Exception as e:
|
24 |
-
print(f"Error loading YOLO model: {e}")
|
25 |
-
self.model = None
|
26 |
-
|
27 |
-
self.crowd_threshold = crowd_threshold
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
if not cap.isOpened():
|
37 |
-
raise ValueError(f"Failed to open video: {video_path}")
|
38 |
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
while cap.isOpened():
|
47 |
-
ret, frame = cap.read()
|
48 |
-
if not ret:
|
49 |
-
break
|
50 |
-
|
51 |
-
# Perform detection
|
52 |
-
results = self.model(frame)
|
53 |
-
person_count = 0
|
54 |
-
|
55 |
-
for result in results:
|
56 |
-
boxes = result.boxes.xyxy.cpu().numpy()
|
57 |
-
classes = result.boxes.cls.cpu().numpy()
|
58 |
-
|
59 |
-
for box, cls in zip(boxes, classes):
|
60 |
-
if int(cls) == 0: # YOLO class ID 0 = "person"
|
61 |
-
person_count += 1
|
62 |
-
x1, y1, x2, y2 = map(int, box)
|
63 |
-
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
64 |
-
cv2.putText(frame, "Person", (x1, y1 - 10),
|
65 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
66 |
-
|
67 |
-
alert_text = "Crowd Alert!" if person_count > self.crowd_threshold else f"People: {person_count}"
|
68 |
-
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
69 |
-
(0, 0, 255) if person_count > self.crowd_threshold else (0, 255, 0), 2)
|
70 |
-
|
71 |
-
out.write(frame)
|
72 |
-
|
73 |
-
cap.release()
|
74 |
-
out.release()
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
|
80 |
-
|
81 |
-
return output_full_path
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
except Exception as e:
|
96 |
-
print(f"Video processing error: {e}")
|
97 |
-
return None # Prevent crashing the app
|
98 |
|
99 |
-
# Gradio Interface
|
100 |
interface = gr.Interface(
|
101 |
fn=process_video,
|
102 |
inputs=gr.Video(label="Upload Video"),
|
103 |
outputs=gr.Video(label="Processed Video"),
|
104 |
-
title="Crowd Detection
|
|
|
105 |
)
|
106 |
|
107 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import cv2
|
3 |
+
import numpy as np
|
4 |
import os
|
5 |
+
import torch
|
6 |
from ultralytics import YOLO
|
7 |
+
import spaces # Import ZeroGPU for Hugging Face Spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
@spaces.GPU # Ensures GPU is allocated during execution
|
10 |
+
def process_video(video_path):
|
11 |
+
"""Process video using YOLOv8 for crowd detection."""
|
12 |
+
|
13 |
+
# Check if CUDA is available
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
print(f"🔍 Using device: {device}")
|
|
|
|
|
16 |
|
17 |
+
# Load YOLOv8 model on GPU
|
18 |
+
model = YOLO("yolov8n.pt").to(device)
|
19 |
+
|
20 |
+
# Read input video
|
21 |
+
cap = cv2.VideoCapture(video_path)
|
22 |
+
if not cap.isOpened():
|
23 |
+
raise ValueError(f"❌ Failed to open video: {video_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
26 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
27 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
28 |
|
29 |
+
print(f"🎥 Video details - FPS: {fps}, Width: {width}, Height: {height}")
|
|
|
30 |
|
31 |
+
# Define output video path
|
32 |
+
output_path = "output_crowd.mp4"
|
33 |
+
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
34 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
35 |
+
|
36 |
+
CROWD_THRESHOLD = 10 # Define crowd limit for alerts
|
37 |
+
frame_count = 0
|
38 |
+
|
39 |
+
while cap.isOpened():
|
40 |
+
ret, frame = cap.read()
|
41 |
+
if not ret:
|
42 |
+
break # End of video
|
43 |
|
44 |
+
frame_count += 1
|
45 |
+
|
46 |
+
# Run YOLO inference on the frame
|
47 |
+
results = model(frame)
|
48 |
+
|
49 |
+
# Count detected persons
|
50 |
+
person_count = 0
|
51 |
+
for result in results:
|
52 |
+
boxes = result.boxes.xyxy.cpu().numpy()
|
53 |
+
classes = result.boxes.cls.cpu().numpy()
|
54 |
+
|
55 |
+
for box, cls in zip(boxes, classes):
|
56 |
+
if int(cls) == 0: # YOLO class ID 0 = "person"
|
57 |
+
person_count += 1
|
58 |
+
x1, y1, x2, y2 = map(int, box)
|
59 |
+
|
60 |
+
# Draw bounding box for persons
|
61 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
62 |
+
cv2.putText(frame, "Person", (x1, y1 - 10),
|
63 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
|
64 |
+
|
65 |
+
# Display count on frame
|
66 |
+
alert_text = "Crowd Alert!" if person_count > CROWD_THRESHOLD else f"People: {person_count}"
|
67 |
+
cv2.putText(frame, alert_text, (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1,
|
68 |
+
(0, 0, 255) if person_count > CROWD_THRESHOLD else (0, 255, 0), 2)
|
69 |
+
|
70 |
+
out.write(frame) # Save frame to output video
|
71 |
+
|
72 |
+
cap.release()
|
73 |
+
out.release()
|
74 |
+
|
75 |
+
if frame_count == 0:
|
76 |
+
raise ValueError("❌ No frames were processed!")
|
77 |
|
78 |
+
if not os.path.exists(output_path):
|
79 |
+
raise FileNotFoundError(f"❌ Output video not found: {output_path}")
|
80 |
|
81 |
+
print(f"✅ Processed video saved at: {output_path}")
|
82 |
+
return output_path
|
|
|
|
|
|
|
83 |
|
84 |
+
# Gradio Interface
|
85 |
interface = gr.Interface(
|
86 |
fn=process_video,
|
87 |
inputs=gr.Video(label="Upload Video"),
|
88 |
outputs=gr.Video(label="Processed Video"),
|
89 |
+
title="Crowd Detection with YOLOv8",
|
90 |
+
description="Upload a video, and YOLOv8 will detect and count people. If the crowd exceeds 10 people, a warning will be displayed."
|
91 |
)
|
92 |
|
93 |
if __name__ == "__main__":
|