dhairyashah's picture
Update app.py
5f3487d verified
raw
history blame
5.99 kB
import spaces
import gradio as gr
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import os
import numpy as np
from PIL import Image as PILImage
import zipfile
import cv2
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
import tempfile
import matplotlib.pyplot as plt
from tqdm import tqdm
import io
with zipfile.ZipFile("examples.zip","r") as zip_ref:
zip_ref.extractall(".")
DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu'
mtcnn = MTCNN(
select_largest=False,
post_process=False,
device=DEVICE
).to(DEVICE).eval()
model = InceptionResnetV1(
pretrained="vggface2",
classify=True,
num_classes=1,
device=DEVICE
)
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()
EXAMPLES_FOLDER = 'examples'
examples_names = os.listdir(EXAMPLES_FOLDER)
examples = []
for example_name in examples_names:
example_path = os.path.join(EXAMPLES_FOLDER, example_name)
label = example_name.split('_')[0]
example = {
'path': example_path,
'label': label
}
examples.append(example)
np.random.shuffle(examples) # shuffle
@spaces.GPU
def process_frame(frame, mtcnn, model, cam, targets):
face = mtcnn(PILImage.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)))
if face is None:
return frame, None, None
face = face.unsqueeze(0)
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
face = face.to(DEVICE)
face = face.to(torch.float32)
face = face / 255.0
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().numpy()
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
with torch.no_grad():
output = torch.sigmoid(model(face).squeeze(0))
prediction = "real" if output.item() < 0.5 else "fake"
confidence = 1 - output.item() if prediction == "real" else output.item()
return visualization, prediction, confidence
@spaces.GPU
def analyze_video(input_video: str):
"""Analyze the video for deepfake detection"""
cap = cv2.VideoCapture(input_video)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
target_layers = [model.block8.branch1[-1]]
cam = GradCAM(model=model, target_layers=target_layers)
targets = [ClassifierOutputTarget(0)]
frame_confidences = []
frame_predictions = []
for _ in tqdm(range(total_frames), desc="Analyzing video"):
ret, frame = cap.read()
if not ret:
break
_, prediction, confidence = process_frame(frame, mtcnn, model, cam, targets)
if prediction is not None and confidence is not None:
frame_confidences.append(confidence)
frame_predictions.append(1 if prediction == "fake" else 0)
cap.release()
# Calculate metrics
fake_percentage = (sum(frame_predictions) / len(frame_predictions)) * 100 if frame_predictions else 0
avg_confidence = np.mean(frame_confidences) if frame_confidences else 0
# Create graphs
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 12))
# Confidence over time
ax1.plot(frame_confidences)
ax1.set_title("Confidence Over Time")
ax1.set_xlabel("Frame")
ax1.set_ylabel("Confidence")
ax1.set_ylim(0, 1)
# Prediction distribution
ax2.hist(frame_predictions, bins=[0, 0.5, 1], rwidth=0.8)
ax2.set_title("Distribution of Predictions")
ax2.set_xlabel("Prediction (0: Real, 1: Fake)")
ax2.set_ylabel("Count")
# Save plot to bytes
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Create progress bar image
progress_fig, progress_ax = plt.subplots(figsize=(8, 2))
progress_ax.barh(["Fake"], [fake_percentage], color='red')
progress_ax.barh(["Fake"], [100 - fake_percentage], left=[fake_percentage], color='green')
progress_ax.set_xlim(0, 100)
progress_ax.set_title("Fake Percentage")
progress_ax.set_xlabel("Percentage")
progress_ax.text(fake_percentage, 0, f"{fake_percentage:.1f}%", va='center', ha='left')
# Save progress bar to bytes
progress_buf = io.BytesIO()
progress_fig.savefig(progress_buf, format='png')
progress_buf.seek(0)
return {
"fake_percentage": fake_percentage,
"avg_confidence": avg_confidence,
"analysis_plot": buf,
"progress_bar": progress_buf,
"total_frames": total_frames,
"processed_frames": len(frame_confidences)
}
def format_results(results):
return f"""
Analysis Results:
- Fake Percentage: {results['fake_percentage']:.2f}%
- Average Confidence: {results['avg_confidence']:.2f}
- Total Frames: {results['total_frames']}
- Processed Frames: {results['processed_frames']}
"""
def analyze_and_format(input_video):
results = analyze_video(input_video)
text_results = format_results(results)
# Convert BytesIO to PIL Images
analysis_plot = PILImage.open(results['analysis_plot'])
progress_bar = PILImage.open(results['progress_bar'])
return text_results, analysis_plot, progress_bar
interface = gr.Interface(
fn=analyze_and_format,
inputs=[
gr.Video(label="Input Video")
],
outputs=[
gr.Textbox(label="Analysis Results"),
gr.Image(label="Analysis Plots"),
gr.Image(label="Fake Percentage")
],
title="Video Deepfake Analysis",
description="Upload a video to analyze for potential deepfakes.",
examples=[]
)
if __name__ == "__main__":
interface.launch(share=True)