File size: 7,352 Bytes
ea0886a
 
 
 
 
 
 
 
 
 
 
 
 
7fdf8ed
 
 
 
 
ea0886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d03cf27
 
ea0886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c392f9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea0886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c392f9e
 
 
 
ea0886a
 
 
c392f9e
ea0886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f181c4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c392f9e
f181c4b
 
ea0886a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import torch
import torchaudio
from speechbrain.inference.speaker import SpeakerRecognition
import gradio as gr
from pydub import AudioSegment
import os
import tempfile
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import io
from PIL import Image 

import pkg_resources
installed_packages = [f"{dist.key}=={dist.version}" for dist in pkg_resources.working_set]
for package in installed_packages:
    print(package)

class SpeakerVerification:
    def __init__(self):
        self.verification = SpeakerRecognition.from_hparams(
            source="speechbrain/spkrec-ecapa-voxceleb",
            savedir="pretrained_models/spkrec-ecapa-voxceleb"
        )
        self.threshold = 0.25

    def convert_audio(self, audio_path: str) -> str:
        try:
            file_ext = os.path.splitext(audio_path)[1].lower()
            if file_ext == '.wav':
                return audio_path
            
            audio = AudioSegment.from_file(audio_path)
            audio = audio.set_channels(1)  # Convert to mono
            audio = audio.set_frame_rate(16000)  # Set sample rate to 16kHz
            with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
                temp_wav_path = temp_wav.name
                audio.export(temp_wav_path, format='wav')
            return temp_wav_path

        except Exception as e:
            print(f"Error converting audio: {str(e)}")
            raise

    def score_to_probability(self, score: float) -> float:
        scale = 10
        centered_score = (score - self.threshold) * scale
        probability = 1 / (1 + np.exp(-centered_score))
        probability = max(0.0, min(1.0, probability))
        return probability
    
    def calculate_confidence_metrics(self, score_value: float) -> dict:
        """Calculate various confidence metrics."""
        try:
            # Distance from threshold
            threshold_distance = abs(score_value - self.threshold)
            
            # Normalized confidence score (0-1 scale)
            normalized_confidence = (score_value + 1) / 2
            
            # Certainty score based on distance from decision boundary
            certainty = 1 - (1 / (1 + np.exp(5 * threshold_distance)))
            
            # Decision strength (how far from ambiguous region)
            ambiguous_region = 0.1
            if abs(score_value - self.threshold) < ambiguous_region:
                decision_strength = "Low"
            elif abs(score_value - self.threshold) < ambiguous_region * 2:
                decision_strength = "Medium"
            else:
                decision_strength = "High"
            
            # Confidence level categories
            if certainty < 0.6:
                confidence_level = "Low"
            elif certainty < 0.8:
                confidence_level = "Medium"
            else:
                confidence_level = "High"

            return {
                "certainty_score": certainty,
                "threshold_distance": threshold_distance,
                "decision_strength": decision_strength,
                "confidence_level": confidence_level
            }
        except Exception as e:
            print(f"Error calculating confidence metrics: {str(e)}")
            return {}

    def verify_speaker(self, audio_path1: str, audio_path2: str) -> tuple:
        try:
            wav_path1 = self.convert_audio(audio_path1)
            wav_path2 = self.convert_audio(audio_path2)
            
            score, prediction = self.verification.verify_files(wav_path1, wav_path2)
            
            if wav_path1 != audio_path1:
                os.unlink(wav_path1)
            if wav_path2 != audio_path2:
                os.unlink(wav_path2)
            
            score_value = score.item()
            probability = self.score_to_probability(score_value)
            decision = "Same speaker" if prediction.item() else "Different speakers"
            
            # Calculate confidence metrics
            confidence_metrics = self.calculate_confidence_metrics(score_value)
            
            return probability, decision, score_value, confidence_metrics

        except Exception as e:
            print(f"Error in speaker verification: {str(e)}")
            return 0.0, f"Error: {str(e)}", 0.0, {}

    def get_embeddings(self, audio_path: str):
        wav_path = self.convert_audio(audio_path)
        signal, fs = torchaudio.load(wav_path)
        
        if signal.shape[0] > 1:
            signal = torch.mean(signal, dim=0, keepdim=True)
            
        embeddings = self.verification.encode_batch(signal)
        
        if wav_path != audio_path:
            os.unlink(wav_path)
        return embeddings.squeeze()

    def plot_embeddings_comparison(self, emb1, emb2):
        fig = Figure(figsize=(10, 4))
        ax = fig.add_subplot(111)
        
        emb1_np = emb1.cpu().numpy()
        emb2_np = emb2.cpu().numpy()
        
        x = range(len(emb1_np))
        ax.plot(x, emb1_np, label='Speaker 1', alpha=0.7)
        ax.plot(x, emb2_np, label='Speaker 2', alpha=0.7)
        
        ax.set_title('Speaker Embeddings Comparison')
        ax.set_xlabel('Embedding Dimension')
        ax.set_ylabel('Value')
        ax.legend()
        
        buf = io.BytesIO()
        fig.savefig(buf, format='png', dpi=100, bbox_inches='tight')
        buf.seek(0)
        
        image = Image.open(buf)
        plt.close(fig)
        return image

def create_gradio_interface():
    speaker_verifier = SpeakerVerification()
    
    def process_audio(audio1, audio2):
        try:
            if audio1 is None or audio2 is None:
                return "Error: Please provide both audio samples", None
            
            probability, decision, score, confidence_metrics = speaker_verifier.verify_speaker(audio1, audio2)
            emb1 = speaker_verifier.get_embeddings(audio1)
            emb2 = speaker_verifier.get_embeddings(audio2)
            
            embeddings_plot = speaker_verifier.plot_embeddings_comparison(emb1, emb2)
            
            result_text = (
                f"Cosine similarity (threshold=0.25): {score:.3f}\n"
                f"Decision: {decision}\n"
                f"Certainty Score: {confidence_metrics['certainty_score']:.2f}\n"
                f"Threshold Distance: {confidence_metrics['threshold_distance']:.3f}\n"
                f"Decision Strength: {confidence_metrics['decision_strength']}\n"
                f"Confidence Level: {confidence_metrics['confidence_level']}"
            )
            
            return result_text, embeddings_plot
        
        except Exception as e:
            return f"Error processing audio: {str(e)}", None

    interface = gr.Interface(
        fn=process_audio,
        inputs=[
            gr.Audio(label="Audio Sample 1", type="filepath"),
            gr.Audio(label="Audio Sample 2", type="filepath")
        ],
        outputs=[
            gr.Textbox(label="Result"),
            gr.Image(label="Embeddings Comparison", type="pil"),
        ],
        title="Speaker Verification System",
        description="Upload two audio samples to check if they're from the same speaker."
    )
    
    return interface

app = create_gradio_interface()

if __name__ == "__main__":
    app.launch()