File size: 7,352 Bytes
ea0886a 7fdf8ed ea0886a d03cf27 ea0886a c392f9e ea0886a c392f9e ea0886a c392f9e ea0886a f181c4b c392f9e f181c4b ea0886a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import torch
import torchaudio
from speechbrain.inference.speaker import SpeakerRecognition
import gradio as gr
from pydub import AudioSegment
import os
import tempfile
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.figure import Figure
import io
from PIL import Image
import pkg_resources
installed_packages = [f"{dist.key}=={dist.version}" for dist in pkg_resources.working_set]
for package in installed_packages:
print(package)
class SpeakerVerification:
def __init__(self):
self.verification = SpeakerRecognition.from_hparams(
source="speechbrain/spkrec-ecapa-voxceleb",
savedir="pretrained_models/spkrec-ecapa-voxceleb"
)
self.threshold = 0.25
def convert_audio(self, audio_path: str) -> str:
try:
file_ext = os.path.splitext(audio_path)[1].lower()
if file_ext == '.wav':
return audio_path
audio = AudioSegment.from_file(audio_path)
audio = audio.set_channels(1) # Convert to mono
audio = audio.set_frame_rate(16000) # Set sample rate to 16kHz
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as temp_wav:
temp_wav_path = temp_wav.name
audio.export(temp_wav_path, format='wav')
return temp_wav_path
except Exception as e:
print(f"Error converting audio: {str(e)}")
raise
def score_to_probability(self, score: float) -> float:
scale = 10
centered_score = (score - self.threshold) * scale
probability = 1 / (1 + np.exp(-centered_score))
probability = max(0.0, min(1.0, probability))
return probability
def calculate_confidence_metrics(self, score_value: float) -> dict:
"""Calculate various confidence metrics."""
try:
# Distance from threshold
threshold_distance = abs(score_value - self.threshold)
# Normalized confidence score (0-1 scale)
normalized_confidence = (score_value + 1) / 2
# Certainty score based on distance from decision boundary
certainty = 1 - (1 / (1 + np.exp(5 * threshold_distance)))
# Decision strength (how far from ambiguous region)
ambiguous_region = 0.1
if abs(score_value - self.threshold) < ambiguous_region:
decision_strength = "Low"
elif abs(score_value - self.threshold) < ambiguous_region * 2:
decision_strength = "Medium"
else:
decision_strength = "High"
# Confidence level categories
if certainty < 0.6:
confidence_level = "Low"
elif certainty < 0.8:
confidence_level = "Medium"
else:
confidence_level = "High"
return {
"certainty_score": certainty,
"threshold_distance": threshold_distance,
"decision_strength": decision_strength,
"confidence_level": confidence_level
}
except Exception as e:
print(f"Error calculating confidence metrics: {str(e)}")
return {}
def verify_speaker(self, audio_path1: str, audio_path2: str) -> tuple:
try:
wav_path1 = self.convert_audio(audio_path1)
wav_path2 = self.convert_audio(audio_path2)
score, prediction = self.verification.verify_files(wav_path1, wav_path2)
if wav_path1 != audio_path1:
os.unlink(wav_path1)
if wav_path2 != audio_path2:
os.unlink(wav_path2)
score_value = score.item()
probability = self.score_to_probability(score_value)
decision = "Same speaker" if prediction.item() else "Different speakers"
# Calculate confidence metrics
confidence_metrics = self.calculate_confidence_metrics(score_value)
return probability, decision, score_value, confidence_metrics
except Exception as e:
print(f"Error in speaker verification: {str(e)}")
return 0.0, f"Error: {str(e)}", 0.0, {}
def get_embeddings(self, audio_path: str):
wav_path = self.convert_audio(audio_path)
signal, fs = torchaudio.load(wav_path)
if signal.shape[0] > 1:
signal = torch.mean(signal, dim=0, keepdim=True)
embeddings = self.verification.encode_batch(signal)
if wav_path != audio_path:
os.unlink(wav_path)
return embeddings.squeeze()
def plot_embeddings_comparison(self, emb1, emb2):
fig = Figure(figsize=(10, 4))
ax = fig.add_subplot(111)
emb1_np = emb1.cpu().numpy()
emb2_np = emb2.cpu().numpy()
x = range(len(emb1_np))
ax.plot(x, emb1_np, label='Speaker 1', alpha=0.7)
ax.plot(x, emb2_np, label='Speaker 2', alpha=0.7)
ax.set_title('Speaker Embeddings Comparison')
ax.set_xlabel('Embedding Dimension')
ax.set_ylabel('Value')
ax.legend()
buf = io.BytesIO()
fig.savefig(buf, format='png', dpi=100, bbox_inches='tight')
buf.seek(0)
image = Image.open(buf)
plt.close(fig)
return image
def create_gradio_interface():
speaker_verifier = SpeakerVerification()
def process_audio(audio1, audio2):
try:
if audio1 is None or audio2 is None:
return "Error: Please provide both audio samples", None
probability, decision, score, confidence_metrics = speaker_verifier.verify_speaker(audio1, audio2)
emb1 = speaker_verifier.get_embeddings(audio1)
emb2 = speaker_verifier.get_embeddings(audio2)
embeddings_plot = speaker_verifier.plot_embeddings_comparison(emb1, emb2)
result_text = (
f"Cosine similarity (threshold=0.25): {score:.3f}\n"
f"Decision: {decision}\n"
f"Certainty Score: {confidence_metrics['certainty_score']:.2f}\n"
f"Threshold Distance: {confidence_metrics['threshold_distance']:.3f}\n"
f"Decision Strength: {confidence_metrics['decision_strength']}\n"
f"Confidence Level: {confidence_metrics['confidence_level']}"
)
return result_text, embeddings_plot
except Exception as e:
return f"Error processing audio: {str(e)}", None
interface = gr.Interface(
fn=process_audio,
inputs=[
gr.Audio(label="Audio Sample 1", type="filepath"),
gr.Audio(label="Audio Sample 2", type="filepath")
],
outputs=[
gr.Textbox(label="Result"),
gr.Image(label="Embeddings Comparison", type="pil"),
],
title="Speaker Verification System",
description="Upload two audio samples to check if they're from the same speaker."
)
return interface
app = create_gradio_interface()
if __name__ == "__main__":
app.launch() |