Spaces:
Running
Running
import os | |
import subprocess | |
from huggingface_hub import HfApi, upload_folder | |
import gradio as gr | |
import hf_utils | |
import utils | |
from safetensors import safe_open | |
import torch | |
subprocess.run(["git", "clone", "https://github.com/huggingface/diffusers", "diffs"]) | |
def error_str(error, title="Error"): | |
return f"""#### {title} | |
{error}""" if error else "" | |
def on_token_change(token): | |
model_names, error = hf_utils.get_my_model_names(token) | |
if model_names: | |
model_names.append("Other") | |
return gr.update(visible=bool(model_names)), gr.update(choices=model_names, value=model_names[0] if model_names else None), gr.update(visible=bool(model_names)), gr.update(value=error_str(error)) | |
def url_to_model_id(model_id_str): | |
return model_id_str.split("/")[-2] + "/" + model_id_str.split("/")[-1] if model_id_str.startswith("https://huggingface.co/") else model_id_str | |
def get_ckpt_names(token, radio_model_names, input_model): | |
model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names | |
if token == "" or model_id == "": | |
return error_str("Please enter both a token and a model name.", title="Invalid input"), gr.update(choices=[]), gr.update(visible=False) | |
try: | |
api = HfApi(token=token) | |
ckpt_files = [f for f in api.list_repo_files(repo_id=model_id) if f.endswith(".ckpt")] | |
if not ckpt_files: | |
return error_str("No checkpoint files found in the model repo."), gr.update(choices=[]), gr.update(visible=False) | |
return None, gr.update(choices=ckpt_files, value=ckpt_files[0], visible=True), gr.update(visible=True) | |
except Exception as e: | |
return error_str(e), gr.update(choices=[]), None | |
def convert_and_push(radio_model_names, input_model, ckpt_name, sd_version, token, path_in_repo, ema, safetensors): | |
extract_ema = ema == "ema" | |
if sd_version == None: | |
return error_str("You must select a stable diffusion version.", title="Invalid input") | |
model_id = url_to_model_id(input_model) if radio_model_names == "Other" else radio_model_names | |
try: | |
model_id = url_to_model_id(model_id) | |
# 1. Download the checkpoint file | |
ckpt_path, revision = hf_utils.download_file(repo_id=model_id, filename=ckpt_name, token=token) | |
if safetensors == "yes": | |
tensors = {} | |
with safe_open(ckpt_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
tensors[key] = f.get_tensor(key) | |
new_checkpoint_path = "/".join(ckpt_path.split("/")[:-1] + ["model_safe.ckpt"]) | |
torch.save(tensors, new_checkpoint_path) | |
ckpt_path = new_checkpoint_path | |
print("Converting ckpt_path", ckpt_path) | |
print(ckpt_path) | |
# 2. Run the conversion script | |
os.makedirs(model_id, exist_ok=True) | |
run_command = [ | |
"python3", | |
"./diffs/scripts/convert_original_stable_diffusion_to_diffusers.py", | |
"--checkpoint_path", | |
ckpt_path, | |
"--dump_path" , | |
model_id, | |
] | |
if extract_ema: | |
run_command.append("--extract_ema") | |
subprocess.run(run_command) | |
# 3. Push to the model repo | |
commit_message="Add Diffusers weights" | |
upload_folder( | |
folder_path=model_id, | |
repo_id=model_id, | |
path_in_repo=path_in_repo, | |
token=token, | |
create_pr=True, | |
commit_message=commit_message, | |
commit_description=f"Add Diffusers weights converted from checkpoint `{ckpt_name}` in revision {revision}", | |
) | |
# # 4. Delete the downloaded checkpoint file, yaml files, and the converted model folder | |
hf_utils.delete_file(revision) | |
subprocess.run(["rm", "-rf", model_id.split('/')[0]]) | |
import glob | |
for f in glob.glob("*.yaml*"): | |
subprocess.run(["rm", "-rf", f]) | |
return f"""Successfully converted the checkpoint and opened a PR to add the weights to the model repo. | |
You can view and merge the PR [here]({hf_utils.get_pr_url(HfApi(token=token), model_id, commit_message)}).""" | |
return "Done" | |
except Exception as e: | |
return error_str(e) | |
DESCRIPTION = """### Convert a stable diffusion checkpoint to Diffusers🧨 | |
With this space, you can easily convert a CompVis stable diffusion checkpoint to Diffusers and automatically create a pull request to the model repo. | |
You can choose to convert a checkpoint from one of your own models, or from any other model on the Hub. | |
You can skip the queue by running the app in the colab: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/gist/qunash/f0f3152c5851c0c477b68b7b98d547fe/convert-sd-to-diffusers.ipynb)""" | |
with gr.Blocks() as demo: | |
gr.Markdown(DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(scale=11): | |
with gr.Column(): | |
gr.Markdown("## 1. Load model info") | |
input_token = gr.Textbox( | |
max_lines=1, | |
type="password", | |
label="Enter your Hugging Face token", | |
placeholder="READ permission is sufficient" | |
) | |
gr.Markdown("You can get a token [here](https://huggingface.co/settings/tokens)") | |
with gr.Group(visible=False) as group_model: | |
radio_model_names = gr.Radio(label="Choose a model") | |
input_model = gr.Textbox( | |
max_lines=1, | |
label="Model name or URL", | |
placeholder="username/model_name", | |
visible=False, | |
) | |
btn_get_ckpts = gr.Button("Load", visible=False) | |
with gr.Column(scale=10): | |
with gr.Column(visible=False) as group_convert: | |
gr.Markdown("## 2. Convert to Diffusers🧨") | |
radio_ckpts = gr.Radio(label="Choose the checkpoint to convert", visible=False) | |
path_in_repo = gr.Textbox(label="Path where the weights will be saved", placeholder="Leave empty for root folder") | |
ema = gr.Radio(label="Extract EMA or non-EMA?", choices=["ema", "non-ema"]) | |
safetensors = gr.Radio(label="Extract from safetensors", choices=["yes", "no"], value="no") | |
radio_sd_version = gr.Radio(label="Choose the model version", choices=["v1", "v2", "v2.1"]) | |
gr.Markdown("Conversion may take a few minutes.") | |
btn_convert = gr.Button("Convert & Push") | |
error_output = gr.Markdown(label="Output") | |
input_token.change( | |
fn=on_token_change, | |
inputs=input_token, | |
outputs=[group_model, radio_model_names, btn_get_ckpts, error_output], | |
queue=False, | |
scroll_to_output=True) | |
radio_model_names.change( | |
lambda x: gr.update(visible=x == "Other"), | |
inputs=radio_model_names, | |
outputs=input_model, | |
queue=False, | |
scroll_to_output=True) | |
btn_get_ckpts.click( | |
fn=get_ckpt_names, | |
inputs=[input_token, radio_model_names, input_model], | |
outputs=[error_output, radio_ckpts, group_convert], | |
scroll_to_output=True, | |
queue=False | |
) | |
btn_convert.click( | |
fn=convert_and_push, | |
inputs=[radio_model_names, input_model, radio_ckpts, radio_sd_version, input_token, path_in_repo, ema, safetensors], | |
outputs=error_output, | |
scroll_to_output=True | |
) | |
# gr.Markdown("""<img src="https://raw.githubusercontent.com/huggingface/diffusers/main/docs/source/imgs/diffusers_library.jpg" width="150"/>""") | |
gr.HTML(""" | |
<div style="border-top: 1px solid #303030;"> | |
<br> | |
<p>Space by: <a href="https://twitter.com/hahahahohohe"><img src="https://img.shields.io/twitter/follow/hahahahohohe?label=%40anzorq&style=social" alt="Twitter Follow"></a></p><br> | |
<a href="https://www.buymeacoffee.com/anzorq" target="_blank"><img src="https://cdn.buymeacoffee.com/buttons/v2/default-yellow.png" alt="Buy Me A Coffee" style="height: 45px !important;width: 162px !important;" ></a><br><br> | |
<p><img src="https://visitor-badge.glitch.me/badge?page_id=anzorq.sd-to-diffusers" alt="visitors"></p> | |
</div> | |
""") | |
demo.queue() | |
demo.launch(debug=True, share=utils.is_google_colab()) | |