Spaces:
Running
Running
import gradio as gr | |
import torch | |
import numpy as np | |
import random | |
from diffusers import DiffusionPipeline | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if device == "cuda" else torch.float32 | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 1024 | |
# 預設可選模型 | |
available_models = [ | |
"digiplay/AM-mix1", | |
"digiplay/pan04", | |
"digiplay/2K" | |
] | |
def load_model(selected_model_id, custom_model_id): | |
model_id = custom_model_id.strip() if custom_model_id.strip() else selected_model_id | |
try: | |
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device) | |
return pipe, model_id, f"✅ Model '{model_id}' loaded successfully!" | |
except Exception as e: | |
return None, "", f"❌ Failed to load model: {e}" | |
def generate_image(pipe, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): | |
if pipe is None: | |
raise ValueError("No model loaded. Please load a model first.") | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
image = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
width=width, | |
height=height, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
).images[0] | |
return image, seed | |
with gr.Blocks(css="#container { max-width: 700px; margin: auto; }") as demo: | |
gr.Markdown("## Text-to-Image Generator with Model Selector") | |
pipe_state = gr.State(None) | |
model_id_state = gr.State("") | |
with gr.Column(elem_id="container"): | |
gr.Markdown("### 1. Choose or Enter Model") | |
with gr.Row(): | |
selected_model = gr.Dropdown(label="Choose a model", choices=available_models, value=available_models[0]) | |
custom_model = gr.Textbox(label="Or enter custom model ID", placeholder="e.g. runwayml/stable-diffusion-v1-5") | |
load_button = gr.Button("Load Model") | |
load_status = gr.Textbox(label="Model Load Status", interactive=False) | |
load_button.click( | |
fn=load_model, | |
inputs=[selected_model, custom_model], | |
outputs=[pipe_state, model_id_state, load_status] | |
) | |
gr.Markdown("### 2. Generate Image") | |
prompt = gr.Textbox(label="Prompt", placeholder="e.g. A futuristic city at night") | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="(optional)", value="", visible=True) | |
with gr.Row(): | |
width = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Width") | |
height = gr.Slider(256, MAX_IMAGE_SIZE, step=32, value=512, label="Height") | |
with gr.Row(): | |
guidance_scale = gr.Slider(0.0, 10.0, step=0.1, value=7.5, label="Guidance Scale") | |
num_inference_steps = gr.Slider(1, 50, step=1, value=25, label="Inference Steps") | |
with gr.Row(): | |
seed = gr.Slider(0, MAX_SEED, step=1, value=0, label="Seed") | |
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True) | |
generate_button = gr.Button("Generate Image") | |
output_image = gr.Image(label="Result") | |
final_seed = gr.Number(label="Used Seed", precision=0) | |
generate_button.click( | |
fn=generate_image, | |
inputs=[pipe_state, prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], | |
outputs=[output_image, final_seed] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |