|
# MultiBand Diffusion |
|
|
|
AudioCraft provides the code and models for MultiBand Diffusion, [From Discrete Tokens to High Fidelity Audio using MultiBand Diffusion][arxiv]. |
|
MultiBand diffusion is a collection of 4 models that can decode tokens from |
|
<a href="https://github.com/facebookresearch/encodec">EnCodec tokenizer</a> into waveform audio. You can listen to some examples on the <a href="https://ai.honu.io/papers/mbd/">sample page</a>. |
|
|
|
<a target="_blank" href="https://colab.research.google.com/drive/1JlTOjB-G0A2Hz3h8PK63vLZk4xdCI5QB?usp=sharing"> |
|
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/> |
|
</a> |
|
<br> |
|
|
|
|
|
## Installation |
|
|
|
Please follow the AudioCraft installation instructions from the [README](../README.md). |
|
|
|
|
|
## Usage |
|
|
|
We offer a number of way to use MultiBand Diffusion: |
|
1. The MusicGen demo includes a toggle to try diffusion decoder. You can use the demo locally by running [`python -m demos.musicgen_app --share`](../demos/musicgen_app.py), or through the [MusicGen Colab](https://colab.research.google.com/drive/1JlTOjB-G0A2Hz3h8PK63vLZk4xdCI5QB?usp=sharing). |
|
2. You can play with MusicGen by running the jupyter notebook at [`demos/musicgen_demo.ipynb`](../demos/musicgen_demo.ipynb) locally (if you have a GPU). |
|
|
|
## API |
|
|
|
We provide a simple API and pre-trained models for MusicGen and for EnCodec at 24 khz for 3 bitrates (1.5 kbps, 3 kbps and 6 kbps). |
|
|
|
See after a quick example for using MultiBandDiffusion with the MusicGen API: |
|
|
|
```python |
|
import torchaudio |
|
from audiocraft.models import MusicGen, MultiBandDiffusion |
|
from audiocraft.data.audio import audio_write |
|
|
|
model = MusicGen.get_pretrained('facebook/musicgen-melody') |
|
mbd = MultiBandDiffusion.get_mbd_musicgen() |
|
model.set_generation_params(duration=8) # generate 8 seconds. |
|
wav, tokens = model.generate_unconditional(4, return_tokens=True) # generates 4 unconditional audio samples and keep the tokens for MBD generation |
|
descriptions = ['happy rock', 'energetic EDM', 'sad jazz'] |
|
wav_diffusion = mbd.tokens_to_wav(tokens) |
|
wav, tokens = model.generate(descriptions, return_tokens=True) # generates 3 samples and keep the tokens. |
|
wav_diffusion = mbd.tokens_to_wav(tokens) |
|
melody, sr = torchaudio.load('./assets/bach.mp3') |
|
# Generates using the melody from the given audio and the provided descriptions, returns audio and audio tokens. |
|
wav, tokens = model.generate_with_chroma(descriptions, melody[None].expand(3, -1, -1), sr, return_tokens=True) |
|
wav_diffusion = mbd.tokens_to_wav(tokens) |
|
|
|
for idx, one_wav in enumerate(wav): |
|
# Will save under {idx}.wav and {idx}_diffusion.wav, with loudness normalization at -14 db LUFS for comparing the methods. |
|
audio_write(f'{idx}', one_wav.cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True) |
|
audio_write(f'{idx}_diffusion', wav_diffusion[idx].cpu(), model.sample_rate, strategy="loudness", loudness_compressor=True) |
|
``` |
|
|
|
For the compression task (and to compare with [EnCodec](https://github.com/facebookresearch/encodec)): |
|
|
|
```python |
|
import torch |
|
from audiocraft.models import MultiBandDiffusion |
|
from encodec import EncodecModel |
|
from audiocraft.data.audio import audio_read, audio_write |
|
|
|
bandwidth = 3.0 # 1.5, 3.0, 6.0 |
|
mbd = MultiBandDiffusion.get_mbd_24khz(bw=bandwidth) |
|
encodec = EncodecModel.encodec_model_24khz() |
|
|
|
somepath = '' |
|
wav, sr = audio_read(somepath) |
|
with torch.no_grad(): |
|
compressed_encodec = encodec(wav) |
|
compressed_diffusion = mbd.regenerate(wav, sample_rate=sr) |
|
|
|
audio_write('sample_encodec', compressed_encodec.squeeze(0).cpu(), mbd.sample_rate, strategy="loudness", loudness_compressor=True) |
|
audio_write('sample_diffusion', compressed_diffusion.squeeze(0).cpu(), mbd.sample_rate, strategy="loudness", loudness_compressor=True) |
|
``` |
|
|
|
|
|
## Training |
|
|
|
The [DiffusionSolver](../audiocraft/solvers/diffusion.py) implements our diffusion training pipeline. |
|
It generates waveform audio conditioned on the embeddings extracted from a pre-trained EnCodec model |
|
(see [EnCodec documentation](./ENCODEC.md) for more details on how to train such model). |
|
|
|
Note that **we do NOT provide any of the datasets** used for training our diffusion models. |
|
We provide a dummy dataset containing just a few examples for illustrative purposes. |
|
|
|
### Example configurations and grids |
|
|
|
One can train diffusion models as described in the paper by using this [dora grid](../audiocraft/grids/diffusion/4_bands_base_32khz.py). |
|
```shell |
|
# 4 bands MBD trainning |
|
dora grid diffusion.4_bands_base_32khz |
|
``` |
|
|
|
### Learn more |
|
|
|
Learn more about AudioCraft training pipelines in the [dedicated section](./TRAINING.md). |
|
|
|
|
|
## Citation |
|
|
|
``` |
|
@article{sanroman2023fromdi, |
|
title={From Discrete Tokens to High-Fidelity Audio Using Multi-Band Diffusion}, |
|
author={San Roman, Robin and Adi, Yossi and Deleforge, Antoine and Serizel, Romain and Synnaeve, Gabriel and Défossez, Alexandre}, |
|
journal={arXiv preprint arXiv:}, |
|
year={2023} |
|
} |
|
``` |
|
|
|
|
|
## License |
|
|
|
See license information in the [README](../README.md). |
|
|
|
|
|
[arxiv]: https://arxiv.org/abs/2308.02560 |
|
[mbd_samples]: https://ai.honu.io/papers/mbd/ |
|
|