assisTen / app.py
dioarafl's picture
Create app.py
8a4b9ae verified
raw
history blame
5.91 kB
import cv2
import gradio as gr
import edge_tts
import tempfile
import numpy as np
from torchvision.models.detection import fasterrcnn_resnet50_fpn
import torchvision.transforms as transforms
from PIL import Image
from huggingface_hub import InferenceClient
class YoloDetector:
def __init__(self, weights_path, cfg_path, names_path):
self.net = cv2.dnn.readNet(weights_path, cfg_path)
self.classes = []
with open(names_path, "r") as f:
self.classes = [line.strip() for line in f.readlines()]
self.layer_names = self.net.getLayerNames()
self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()]
def detect_objects(self, frame):
height, width, channels = frame.shape
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
self.net.setInput(blob)
outs = self.net.forward(self.output_layers)
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.5:
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
font = cv2.FONT_HERSHEY_PLAIN
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(self.classes[class_ids[i]])
color = (0, 255, 0)
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label, (x, y + 30), font, 3, color, 2)
return frame
class JarvisModels:
def __init__(self):
self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
self.detector = YoloDetector("yolov3.weights", "yolov3.cfg", "coco.names")
async def generate_model1(self, prompt):
generate_kwargs = dict(
temperature=0.6,
max_new_tokens=256,
top_p=0.95,
repetition_penalty=1,
do_sample=True,
seed=42,
)
formatted_prompt = system_instructions1 + prompt + "[JARVIS]"
stream = self.client1.text_generation(
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True)
output = ""
for response in stream:
output += response.token.text
communicate = edge_tts.Communicate(output)
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
communicate.save(tmp_path)
return tmp_path
class FasterRCNNDetector:
def __init__(self):
self.model = fasterrcnn_resnet50_fpn(pretrained=True)
self.model.eval()
self.classes = [
"__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus",
"train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign",
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
"elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A",
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball",
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket",
"bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl",
"banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza",
"donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table",
"N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
"microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book",
"clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"
]
def detect_objects(self, image):
image_pil = Image.fromarray(image)
transform = transforms.Compose([transforms.ToTensor()])
image_tensor = transform(image_pil).unsqueeze(0)
with torch.no_grad():
prediction = self.model(image_tensor)
boxes = prediction[0]['boxes']
labels = prediction[0]['labels']
scores = prediction[0]['scores']
for box, label, score in zip(boxes, labels, scores):
box = [int(i) for i in box]
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2)
cv2.putText(image, self.classes[label], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2)
return image
def generate_response(frame):
jarvis = JarvisModels()
detector = FasterRCNNDetector()
frame_with_boxes = jarvis.detector.detect_objects(frame)
cv2.imwrite("temp.jpg", frame_with_boxes)
communicate = edge_tts.Communicate("Objects detected!")
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file:
tmp_path = tmp_file.name
communicate.save(tmp_path)
return tmp_path
iface = gr.Webcam(gr.Video(label="Webcam", parameters=["fps=30"], is_streaming=True), preprocess=generate_response, postprocess=FasterRCNNDetector().detect_objects, show_loading=False)
gr.Interface(fn=iface, layout="vertical", capture_session=True).launch()