|
import cv2 |
|
import gradio as gr |
|
import edge_tts |
|
import tempfile |
|
import numpy as np |
|
from torchvision.models.detection import fasterrcnn_resnet50_fpn |
|
import torchvision.transforms as transforms |
|
from PIL import Image |
|
from huggingface_hub import InferenceClient |
|
|
|
class YoloDetector: |
|
def __init__(self, weights_path, cfg_path, names_path): |
|
self.net = cv2.dnn.readNet(weights_path, cfg_path) |
|
self.classes = [] |
|
with open(names_path, "r") as f: |
|
self.classes = [line.strip() for line in f.readlines()] |
|
self.layer_names = self.net.getLayerNames() |
|
self.output_layers = [self.layer_names[i[0] - 1] for i in self.net.getUnconnectedOutLayers()] |
|
|
|
def detect_objects(self, frame): |
|
height, width, channels = frame.shape |
|
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False) |
|
self.net.setInput(blob) |
|
outs = self.net.forward(self.output_layers) |
|
|
|
class_ids = [] |
|
confidences = [] |
|
boxes = [] |
|
for out in outs: |
|
for detection in out: |
|
scores = detection[5:] |
|
class_id = np.argmax(scores) |
|
confidence = scores[class_id] |
|
if confidence > 0.5: |
|
center_x = int(detection[0] * width) |
|
center_y = int(detection[1] * height) |
|
w = int(detection[2] * width) |
|
h = int(detection[3] * height) |
|
x = int(center_x - w / 2) |
|
y = int(center_y - h / 2) |
|
boxes.append([x, y, w, h]) |
|
confidences.append(float(confidence)) |
|
class_ids.append(class_id) |
|
|
|
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) |
|
font = cv2.FONT_HERSHEY_PLAIN |
|
for i in range(len(boxes)): |
|
if i in indexes: |
|
x, y, w, h = boxes[i] |
|
label = str(self.classes[class_ids[i]]) |
|
color = (0, 255, 0) |
|
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2) |
|
cv2.putText(frame, label, (x, y + 30), font, 3, color, 2) |
|
|
|
return frame |
|
|
|
class JarvisModels: |
|
def __init__(self): |
|
self.client1 = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") |
|
self.detector = YoloDetector("yolov3.weights", "yolov3.cfg", "coco.names") |
|
|
|
async def generate_model1(self, prompt): |
|
generate_kwargs = dict( |
|
temperature=0.6, |
|
max_new_tokens=256, |
|
top_p=0.95, |
|
repetition_penalty=1, |
|
do_sample=True, |
|
seed=42, |
|
) |
|
formatted_prompt = system_instructions1 + prompt + "[JARVIS]" |
|
stream = self.client1.text_generation( |
|
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=True) |
|
output = "" |
|
for response in stream: |
|
output += response.token.text |
|
|
|
communicate = edge_tts.Communicate(output) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
communicate.save(tmp_path) |
|
return tmp_path |
|
|
|
class FasterRCNNDetector: |
|
def __init__(self): |
|
self.model = fasterrcnn_resnet50_fpn(pretrained=True) |
|
self.model.eval() |
|
self.classes = [ |
|
"__background__", "person", "bicycle", "car", "motorcycle", "airplane", "bus", |
|
"train", "truck", "boat", "traffic light", "fire hydrant", "N/A", "stop sign", |
|
"parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", |
|
"elephant", "bear", "zebra", "giraffe", "N/A", "backpack", "umbrella", "N/A", "N/A", |
|
"handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", |
|
"kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", |
|
"bottle", "N/A", "wine glass", "cup", "fork", "knife", "spoon", "bowl", |
|
"banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", |
|
"donut", "cake", "chair", "couch", "potted plant", "bed", "N/A", "dining table", |
|
"N/A", "N/A", "toilet", "N/A", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", |
|
"microwave", "oven", "toaster", "sink", "refrigerator", "N/A", "book", |
|
"clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush" |
|
] |
|
|
|
def detect_objects(self, image): |
|
image_pil = Image.fromarray(image) |
|
transform = transforms.Compose([transforms.ToTensor()]) |
|
image_tensor = transform(image_pil).unsqueeze(0) |
|
|
|
with torch.no_grad(): |
|
prediction = self.model(image_tensor) |
|
|
|
boxes = prediction[0]['boxes'] |
|
labels = prediction[0]['labels'] |
|
scores = prediction[0]['scores'] |
|
|
|
for box, label, score in zip(boxes, labels, scores): |
|
box = [int(i) for i in box] |
|
cv2.rectangle(image, (box[0], box[1]), (box[2], box[3]), (0, 255, 0), 2) |
|
cv2.putText(image, self.classes[label], (box[0], box[1] - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (36,255,12), 2) |
|
|
|
return image |
|
|
|
def generate_response(frame): |
|
jarvis = JarvisModels() |
|
detector = FasterRCNNDetector() |
|
frame_with_boxes = jarvis.detector.detect_objects(frame) |
|
cv2.imwrite("temp.jpg", frame_with_boxes) |
|
communicate = edge_tts.Communicate("Objects detected!") |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_file: |
|
tmp_path = tmp_file.name |
|
communicate.save(tmp_path) |
|
return tmp_path |
|
|
|
iface = gr.Webcam(gr.Video(label="Webcam", parameters=["fps=30"], is_streaming=True), preprocess=generate_response, postprocess=FasterRCNNDetector().detect_objects, show_loading=False) |
|
gr.Interface(fn=iface, layout="vertical", capture_session=True).launch() |