tortoise5c / app.py
djkesu's picture
loading conditioning latents during voice creation
238dfd8
raw
history blame
11.6 kB
import os
import shutil
from pathlib import Path
import streamlit as st
from random import randint
from tortoise.api import MODELS_DIR
from tortoise.inference import (
infer_on_texts,
run_and_save_tts,
split_and_recombine_text,
)
from tortoise.api import TextToSpeech
from tortoise.utils.diffusion import SAMPLERS
from app_utils.filepicker import st_file_selector
from app_utils.conf import TortoiseConfig
from app_utils.funcs import (
timeit,
load_model,
list_voices,
load_voice_conditionings,
)
LATENT_MODES = [
"Tortoise original (bad)",
"average per 4.27s (broken on small files)",
"average per voice file (broken on small files)",
]
def main():
conf = TortoiseConfig()
voice_samples, conditioning_latents = None, None
with st.expander("Create New Voice", expanded=True):
if "file_uploader_key" not in st.session_state:
st.session_state["file_uploader_key"] = str(randint(1000, 100000000))
st.session_state["text_input_key"] = str(randint(1000, 100000000))
uploaded_files = st.file_uploader(
"Upload Audio Samples for a New Voice",
accept_multiple_files=True,
type=["wav"],
key=st.session_state["file_uploader_key"]
)
voice_name = st.text_input(
"New Voice Name",
help="Enter a name for your new voice.",
value="",
key=st.session_state["text_input_key"]
)
create_voice_button = st.button(
"Create Voice",
disabled = ((voice_name.strip() == "") | (len(uploaded_files) == 0))
)
if create_voice_button:
st.write(st.session_state)
with st.spinner(f"Creating new voice: {voice_name}"):
new_voice_name = voice_name.strip().replace(" ", "_")
voices_dir = f'./tortoise/voices/{new_voice_name}/'
if os.path.exists(voices_dir):
shutil.rmtree(voices_dir)
os.makedirs(voices_dir)
for index, uploaded_file in enumerate(uploaded_files):
bytes_data = uploaded_file.read()
with open(f"{voices_dir}voice_sample{index}.wav", "wb") as wav_file:
wav_file.write(bytes_data)
# # Generate conditioning latents and samples here
# voice_samples, conditioning_latents = generate_conditioning(voices_dir)
# # Save the conditioning latents and samples
# save_conditioning(voices_dir, voice_samples, conditioning_latents)
voice_samples, conditioning_latents = TextToSpeech.get_conditioning_latents(new_voice_name)
print(voice_samples, conditioning_latents)
st.session_state["text_input_key"] = str(randint(1000, 100000000))
st.session_state["file_uploader_key"] = str(randint(1000, 100000000))
st.experimental_rerun()
text = st.text_area(
"Text",
help="Text to speak.",
value="The expressiveness of autoregressive transformers is literally nuts! I absolutely adore them.",
)
voices = [v for v in os.listdir("tortoise/voices") if v != "cond_latent_example"]
voice = st.selectbox(
"Voice",
voices,
help="Selects the voice to use for generation. See options in voices/ directory (and add your own!) "
"Use the & character to join two voices together. Use a comma to perform inference on multiple voices.",
index=0,
)
preset = st.selectbox(
"Preset",
(
"single_sample",
"ultra_fast",
"very_fast",
"ultra_fast_old",
"fast",
"standard",
"high_quality",
),
help="Which voice preset to use.",
index=1,
)
with st.expander("Advanced"):
col1, col2 = st.columns(2)
with col1:
"""#### Model parameters"""
candidates = st.number_input(
"Candidates",
help="How many output candidates to produce per-voice.",
value=1,
)
latent_averaging_mode = st.radio(
"Latent averaging mode",
LATENT_MODES,
help="How voice samples should be averaged together.",
index=0,
)
sampler = st.radio(
"Sampler",
["dpm++2m", "p", "ddim"],
help="Diffusion sampler. Note that dpm++2m is experimental and typically requires more steps.",
index=1,
)
steps = st.number_input(
"Steps",
help="Override the steps used for diffusion (default depends on preset)",
value=10,
)
seed = st.number_input(
"Seed",
help="Random seed which can be used to reproduce results.",
value=-1,
)
if seed == -1:
seed = None
voice_fixer = st.checkbox(
"Voice fixer",
help="Use `voicefixer` to improve audio quality. This is a post-processing step which can be applied to any output.",
value=True,
)
"""#### Directories"""
output_path = st.text_input(
"Output Path", help="Where to store outputs.", value="results/"
)
with col2:
"""#### Optimizations"""
high_vram = not st.checkbox(
"Low VRAM",
help="Re-enable default offloading behaviour of tortoise",
value=True,
)
half = st.checkbox(
"Half-Precision",
help="Enable autocast to half precision for autoregressive model",
value=False,
)
kv_cache = st.checkbox(
"Key-Value Cache",
help="Enable kv_cache usage, leading to drastic speedups but worse memory usage",
value=True,
)
cond_free = st.checkbox(
"Conditioning Free",
help="Force conditioning free diffusion",
value=True,
)
no_cond_free = st.checkbox(
"Force Not Conditioning Free",
help="Force disable conditioning free diffusion",
value=False,
)
"""#### Text Splitting"""
min_chars_to_split = st.number_input(
"Min Chars to Split",
help="Minimum number of characters to split text on",
min_value=50,
value=200,
step=1,
)
"""#### Debug"""
produce_debug_state = st.checkbox(
"Produce Debug State",
help="Whether or not to produce debug_state.pth, which can aid in reproducing problems. Defaults to true.",
value=True,
)
ar_checkpoint = "."
diff_checkpoint = "."
if st.button("Update Basic Settings"):
conf.update(
EXTRA_VOICES_DIR=extra_voices_dir,
LOW_VRAM=not high_vram,
AR_CHECKPOINT=ar_checkpoint,
DIFF_CHECKPOINT=diff_checkpoint,
)
ar_checkpoint = None
diff_checkpoint = None
tts = load_model(MODELS_DIR, high_vram, kv_cache, ar_checkpoint, diff_checkpoint)
if st.button("Start"):
assert latent_averaging_mode
assert preset
assert voice
def show_generation(fp, filename: str):
"""
audio_buffer = BytesIO()
save_gen_with_voicefix(g, audio_buffer, squeeze=False)
torchaudio.save(audio_buffer, g, 24000, format='wav')
"""
st.audio(str(fp), format="audio/wav")
st.download_button(
"Download sample",
str(fp),
file_name=filename, # this doesn't actually seem to work lol
)
with st.spinner(
f"Generating {candidates} candidates for voice {voice} (seed={seed}). You can see progress in the terminal"
):
os.makedirs(output_path, exist_ok=True)
selected_voices = voice.split(",")
for k, selected_voice in enumerate(selected_voices):
if "&" in selected_voice:
voice_sel = selected_voice.split("&")
else:
voice_sel = [selected_voice]
voice_samples, conditioning_latents = load_voice_conditionings(
voice_sel, []
)
voice_path = Path(os.path.join(output_path, selected_voice))
with timeit(
f"Generating {candidates} candidates for voice {selected_voice} (seed={seed})"
):
nullable_kwargs = {
k: v
for k, v in zip(
["sampler", "diffusion_iterations", "cond_free"],
[sampler, steps, cond_free],
)
if v is not None
}
def call_tts(text: str):
return tts.tts_with_preset(
text,
k=candidates,
voice_samples=voice_samples,
conditioning_latents=conditioning_latents,
preset=preset,
use_deterministic_seed=seed,
return_deterministic_state=True,
cvvp_amount=0.0,
half=half,
latent_averaging_mode=LATENT_MODES.index(
latent_averaging_mode
),
**nullable_kwargs,
)
if len(text) < min_chars_to_split:
filepaths = run_and_save_tts(
call_tts,
text,
voice_path,
return_deterministic_state=True,
return_filepaths=True,
voicefixer=voice_fixer,
)
for i, fp in enumerate(filepaths):
show_generation(fp, f"{selected_voice}-text-{i}.wav")
else:
desired_length = int(min_chars_to_split)
texts = split_and_recombine_text(
text, desired_length, desired_length + 100
)
filepaths = infer_on_texts(
call_tts,
texts,
voice_path,
return_deterministic_state=True,
return_filepaths=True,
lines_to_regen=set(range(len(texts))),
voicefixer=voice_fixer,
)
for i, fp in enumerate(filepaths):
show_generation(fp, f"{selected_voice}-text-{i}.wav")
if produce_debug_state:
"""Debug states can be found in the output directory"""
if __name__ == "__main__":
main()