Writeflow / app.py
dlaima's picture
Create app.py
4878ce8 verified
import warnings
warnings.filterwarnings("ignore", message=".*TqdmWarning.*")
from dotenv import load_dotenv
_ = load_dotenv()
from langgraph.graph import StateGraph, END
from typing import TypedDict, Annotated, List
import operator
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_openai import ChatOpenAI
from pydantic import BaseModel
from tavily import TavilyClient
import os
import gradio as gr
# Define agent state class
class AgentState(TypedDict):
task: str
lnode: str
plan: str
research_queries: List[str]
draft: str
critique: str
content: List[str]
revision_number: int
max_revisions: int
count: Annotated[int, operator.add]
# Define queries class
class Queries(BaseModel):
queries: List[str]
# Writer Agent Class
class Ewriter():
def __init__(self):
self.model = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
self.PLAN_PROMPT = "You are an expert writer tasked with writing a high-level outline of a short 3-paragraph essay."
self.RESEARCH_PROMPT = "Generate three research queries to help in writing an essay on the given topic."
self.WRITER_PROMPT = "You are an essay assistant tasked with writing an excellent 3-paragraph essay."
self.REFLECTION_PROMPT = "You are a teacher grading an essay. Provide critique and suggestions."
self.tavily = TavilyClient(api_key=os.environ["TAVILY_API_KEY"])
# Initialize Graph
builder = StateGraph(AgentState)
builder.add_node("planner", self.plan_node)
builder.add_node("research", self.research_node)
builder.add_node("generate", self.generation_node)
builder.add_node("reflect", self.reflection_node)
builder.set_entry_point("planner")
builder.add_edge("planner", "research")
builder.add_edge("research", "generate")
builder.add_edge("generate", "reflect")
builder.add_edge("reflect", END) # Ensure reflect is not a dead-end
self.graph = builder.compile()
def plan_node(self, state: AgentState):
try:
response = self.model.invoke([SystemMessage(content=self.PLAN_PROMPT), HumanMessage(content=state['task'])])
return {"plan": response.content, "lnode": "planner", "count": 1}
except Exception as e:
return {"plan": f"Error occurred in planning: {str(e)}", "lnode": "planner", "count": 0}
def research_node(self, state: AgentState):
try:
response = self.model.invoke([SystemMessage(content=self.RESEARCH_PROMPT), HumanMessage(content=state['task'])])
return {"research_queries": response.content.split('\n'), "lnode": "research", "count": 1}
except Exception as e:
return {"research_queries": f"Error occurred in research: {str(e)}", "lnode": "research", "count": 0}
def generation_node(self, state: AgentState):
try:
response = self.model.invoke([SystemMessage(content=self.WRITER_PROMPT), HumanMessage(content=state['task'])])
return {"draft": response.content, "lnode": "generate", "count": 1}
except Exception as e:
return {"draft": f"Error occurred in generation: {str(e)}", "lnode": "generate", "count": 0}
def reflection_node(self, state: AgentState):
try:
response = self.model.invoke([SystemMessage(content=self.REFLECTION_PROMPT), HumanMessage(content=state['draft'])])
return {"critique": response.content, "lnode": "reflect", "count": 1}
except Exception as e:
return {"critique": f"Error occurred in reflection: {str(e)}", "lnode": "reflect", "count": 0}
# Gradio UI
class WriterGui():
def __init__(self, graph):
self.graph = graph
self.demo = self.create_interface()
def run_agent(self, topic, revision_number, max_revisions):
config = {'task': topic, 'max_revisions': max_revisions, 'revision_number': revision_number, 'lnode': "", 'count': 0}
response = self.graph.invoke(config)
return response["draft"], response["lnode"], response["count"], response.get("critique", ""), response.get("research_queries", [])
def continue_agent(self, topic, revision_number, max_revisions, last_node, current_draft):
config = {'task': topic, 'max_revisions': max_revisions, 'revision_number': revision_number, 'lnode': last_node, 'draft': current_draft, 'count': 0}
response = self.graph.invoke(config)
return response["draft"], response["lnode"], response["count"], response.get("critique", ""), response.get("research_queries", [])
def create_interface(self):
with gr.Blocks() as demo:
with gr.Tabs():
with gr.Tab("Agent"):
topic_input = gr.Textbox(label="Essay Topic")
last_node = gr.Textbox(label="Last Node", interactive=False)
next_node = gr.Textbox(label="Next Node", interactive=False)
thread = gr.Textbox(label="Thread", interactive=False)
draft_rev = gr.Textbox(label="Draft Revision", interactive=False)
count = gr.Textbox(label="Count", interactive=False)
generate_button = gr.Button("Generate Essay", variant="primary")
continue_button = gr.Button("Continue Essay")
with gr.Row():
gr.Markdown("**Manage Agent**")
with gr.Row():
output_text = gr.Textbox(label="Live Agent Output", interactive=False)
with gr.Row():
critique_text = gr.Textbox(label="Critique", interactive=False)
with gr.Row():
research_text = gr.Textbox(label="Research Queries", interactive=False)
generate_button.click(fn=self.run_agent, inputs=[topic_input, gr.State(0), gr.State(2)], outputs=[output_text, last_node, next_node, critique_text, research_text])
continue_button.click(fn=self.continue_agent, inputs=[topic_input, gr.State(0), gr.State(2), last_node, draft_rev], outputs=[output_text, last_node, next_node, critique_text, research_text])
return demo
def launch(self):
self.demo.launch(share=True)
# Run the App
MultiAgent = Ewriter()
app = WriterGui(MultiAgent.graph)
app.launch()