dmolino's picture
Upload 225 files
9a7fe1f verified
import torch
import torch.nn as nn
import torchaudio
from .clap_modules.open_clip import create_model
from .clap_modules.training.data import get_audio_features
from ..common.get_model import register
@register('clap_audio')
class CLAPAudioEmbeddingClassifierFreev2(nn.Module):
"""Uses the CLAP audio encoder"""
def __init__(
self,
pretrained_path="",
key="waveform",
sampling_rate=16000,
embed_mode="audio",
unconditional_prob=0.1,
random_mute=False,
max_random_mute_portion=0.5,
training_mode=True,
joint_embed_shape=768,
embed_shape=512,
num_layers=12,
depths=[2, 2, 6, 2],
amodel="HTSAT-large",
):
super().__init__()
self.key = key
self.amodel = amodel # or 'PANN-14'
self.tmodel = "roberta" # the best text encoder in our training
self.enable_fusion = False # False if you do not want to use the fusion model
self.fusion_type = "aff_2d"
self.pretrained = pretrained_path
self.embed_mode = embed_mode
self.embed_mode_orig = embed_mode
self.sampling_rate = sampling_rate
self.unconditional_prob = unconditional_prob
self.random_mute = random_mute
self.joint_embed_shape = joint_embed_shape
self.max_random_mute_portion = max_random_mute_portion
self.training_mode = training_mode
self.model, self.model_cfg = create_model(
self.amodel,
self.tmodel,
self.pretrained,
precision="fp32",
device="cpu",
enable_fusion=self.enable_fusion,
fusion_type=self.fusion_type,
joint_embed_shape=self.joint_embed_shape,
)
def get_dtype(self):
return next(self.model.parameters()).dtype
def get_unconditional_condition(self, batchsize):
self.unconditional_token = self.model.get_text_embedding(
self.tokenizer(["", ""])
)[0:1]
return torch.cat([self.unconditional_token.unsqueeze(0)] * batchsize, dim=0)
def batch_to_list(self, batch):
ret = []
for i in range(batch.size(0)):
ret.append(batch[i])
return ret
def make_decision(self, probability):
if float(torch.rand(1)) < probability:
return True
else:
return False
def random_uniform(self, start, end):
val = torch.rand(1).item()
return start + (end - start) * val
def _random_mute(self, waveform):
# waveform: [bs, t-steps]
t_steps = waveform.size(-1)
for i in range(waveform.size(0)):
mute_size = int(
self.random_uniform(0, end=int(t_steps * self.max_random_mute_portion))
)
mute_start = int(self.random_uniform(0, t_steps - mute_size))
waveform[i, mute_start : mute_start + mute_size] = 0
return waveform
def cos_similarity(self, waveform, text):
# waveform: [bs, t_steps]
with torch.no_grad():
self.embed_mode = "audio"
audio_emb = self(waveform.cuda())
self.embed_mode = "text"
text_emb = self(text)
similarity = F.cosine_similarity(audio_emb, text_emb, dim=2)
return similarity.squeeze()
def forward(self, batch, key=None):
# the 'fusion' truncate mode can be changed to 'rand_trunc' if run in unfusion mode
if self.embed_mode == "audio":
audio_dict_list = []
assert (
self.sampling_rate == 16000
), "We only support 16000 sampling rate"
# batch: [bs, 1, t-samples]
batch = torchaudio.functional.resample(
batch, orig_freq=self.sampling_rate, new_freq=48000
)
for waveform in self.batch_to_list(batch):
audio_dict = {}
audio_dict = get_audio_features(
audio_dict,
waveform.squeeze(),
480000,
data_truncating="fusion",
data_filling="repeatpad",
audio_cfg=self.model_cfg["audio_cfg"],
dtype=self.get_dtype(),
)
audio_dict_list.append(audio_dict)
# [bs, 768]
embed = self.model.get_audio_embedding(audio_dict_list)
embed = embed.unsqueeze(1)
# [bs, 1, 768]
return embed