|
import os |
|
if os.getenv('SPACES_ZERO_GPU') == "true": |
|
os.environ['SPACES_ZERO_GPU'] = "1" |
|
os.environ['K_DIFFUSION_USE_COMPILE'] = "0" |
|
import spaces |
|
import cv2 |
|
import gradio as gr |
|
import random |
|
import torch |
|
from basicsr.archs.srvgg_arch import SRVGGNetCompact |
|
from basicsr.utils import img2tensor, tensor2img |
|
from gradio_imageslider import ImageSlider |
|
from facexlib.utils.face_restoration_helper import FaceRestoreHelper |
|
from realesrgan.utils import RealESRGANer |
|
|
|
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow |
|
|
|
torch.set_grad_enabled(False) |
|
|
|
MAX_SEED = 1000000 |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
os.makedirs('pretrained_models', exist_ok=True) |
|
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth' |
|
if not os.path.exists(realesr_model_path): |
|
os.system( |
|
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth") |
|
|
|
|
|
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') |
|
half = True if torch.cuda.is_available() else False |
|
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, half=half) |
|
|
|
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device) |
|
|
|
face_helper_dummy = FaceRestoreHelper( |
|
1, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=device, |
|
model_rootpath=None) |
|
|
|
os.makedirs('output', exist_ok=True) |
|
|
|
|
|
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device): |
|
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0) |
|
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) |
|
x_t_next = source_dist_samples.clone() |
|
t_one = torch.ones(x.shape[0], device=device) |
|
for i in range(num_flow_steps): |
|
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps |
|
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype) |
|
x_t_next = x_t_next.clone() + v_t_next * dt |
|
|
|
return x_t_next.clip(0, 1).to(torch.float32) |
|
|
|
@torch.inference_mode() |
|
@spaces.GPU() |
|
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2): |
|
face_helper.clean_all() |
|
if has_aligned: |
|
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) |
|
face_helper.cropped_faces = [img] |
|
else: |
|
face_helper.read_image(img) |
|
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5) |
|
|
|
|
|
|
|
face_helper.align_warp_face() |
|
|
|
for cropped_face in face_helper.cropped_faces: |
|
|
|
h, w = cropped_face.shape[0], cropped_face.shape[1] |
|
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR) |
|
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True) |
|
cropped_face_t = cropped_face_t.unsqueeze(0).to(device) |
|
|
|
dummy_x = torch.zeros_like(cropped_face_t) |
|
|
|
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device) |
|
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1)) |
|
|
|
restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR) |
|
|
|
|
|
restored_face = restored_face.astype('uint8') |
|
face_helper.add_restored_face(restored_face) |
|
|
|
if not has_aligned and paste_back: |
|
|
|
if upsampler is not None: |
|
|
|
bg_img = upsampler.enhance(img, outscale=scale)[0] |
|
else: |
|
bg_img = None |
|
|
|
face_helper.get_inverse_affine(None) |
|
|
|
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img) |
|
return face_helper.cropped_faces, face_helper.restored_faces, restored_img |
|
else: |
|
return face_helper.cropped_faces, face_helper.restored_faces, None |
|
|
|
|
|
@torch.inference_mode() |
|
@spaces.GPU() |
|
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
torch.manual_seed(seed) |
|
if scale > 4: |
|
scale = 4 |
|
img = cv2.imread(img, cv2.IMREAD_UNCHANGED) |
|
if len(img.shape) == 2: |
|
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) |
|
|
|
h, w = img.shape[0:2] |
|
if h > 4500 or w > 4500: |
|
print('Image size too large.') |
|
return None, None |
|
|
|
if h < 300: |
|
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) |
|
|
|
face_helper = FaceRestoreHelper( |
|
scale, |
|
face_size=512, |
|
crop_ratio=(1, 1), |
|
det_model='retinaface_resnet50', |
|
save_ext='png', |
|
use_parse=True, |
|
device=device, |
|
model_rootpath=None) |
|
|
|
has_aligned = True if aligned == 'Yes' else False |
|
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False, |
|
paste_back=True, num_flow_steps=num_flow_steps, scale=scale) |
|
if has_aligned: |
|
output = restored_aligned[0] |
|
else: |
|
output = restored_img |
|
|
|
save_path = f'output/out.png' |
|
cv2.imwrite(save_path, output) |
|
|
|
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) |
|
h, w = output.shape[0:2] |
|
orig_input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) |
|
orig_input = cv2.resize(orig_input, (h, w), interpolation=cv2.INTER_LINEAR) |
|
return [[orig_input, output, seed], save_path] |
|
|
|
intro = """ |
|
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h2> |
|
<h3 style="margin-bottom: 10px; text-align: center;"> |
|
<a href="https://arxiv.org/abs/2410.00418">[Paper]</a> | |
|
<a href="https://pmrf-ml.github.io/">[Project Page]</a> | |
|
<a href="https://github.com/ohayonguy/PMRF">[Code]</a> |
|
</h3> |
|
""" |
|
markdown_top = """ |
|
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418). |
|
|
|
Please refer to our project's page for more details: https://pmrf-ml.github.io/. |
|
|
|
--- |
|
|
|
You may use this demo to enhance the quality of any image which contains faces. |
|
|
|
1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below. |
|
2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately. |
|
|
|
*Notes*: |
|
|
|
1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed. |
|
2. Images that are too large won't work due to memory constraints. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
article = r""" |
|
|
|
If you find our work useful, please help to ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks! |
|
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF) |
|
|
|
📝 **Citation** |
|
|
|
If our work is useful for your research, please consider citing: |
|
```bibtex |
|
@article{ohayon2024pmrf, |
|
author = {Guy Ohayon and Tomer Michaeli and Michael Elad}, |
|
title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration}, |
|
journal = {arXiv preprint arXiv:2410.00418}, |
|
year = {2024}, |
|
url = {https://arxiv.org/abs/2410.00418} |
|
} |
|
``` |
|
|
|
📋 **License** |
|
|
|
This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>. |
|
Redistribution and use for non-commercial purposes should follow this license. |
|
|
|
📧 **Contact** |
|
|
|
If you have any questions, please feel free to contact me at <b>[email protected]</b>. |
|
""" |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 512px; |
|
} |
|
#run-button { |
|
background-color: #FFA500; /* Orange */ |
|
color: white; |
|
border: none; |
|
padding: 10px 24px; |
|
font-size: 16px; |
|
cursor: pointer; |
|
border-radius: 8px; /* Optional: Makes the button corners rounded */ |
|
} |
|
#run-button:hover { |
|
background-color: #e69500; /* Darker orange on hover */ |
|
} |
|
""" |
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.HTML(intro) |
|
gr.Markdown(markdown_top) |
|
|
|
with gr.Row(): |
|
run_button = gr.Button(value="Run") |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
input_im = gr.Image(label="Input Image", type="filepath") |
|
with gr.Column(scale=1): |
|
num_inference_steps = gr.Slider( |
|
label="Number of Inference Steps", |
|
minimum=1, |
|
maximum=200, |
|
step=1, |
|
value=25, |
|
) |
|
upscale_factor = gr.Slider( |
|
label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", |
|
minimum=1, |
|
maximum=4, |
|
step=0.1, |
|
value=1, |
|
) |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=42, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
aligned = gr.Checkbox(label="The input is an aligned face image", value=True) |
|
|
|
with gr.Row(): |
|
result = ImageSlider(label="Input / Output", type="numpy", interactive=True) |
|
with gr.Row(): |
|
file = gr.File(label="Download the output image") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gr.Markdown(article) |
|
gr.on( |
|
[run_button.click], |
|
fn=inference, |
|
inputs=[ |
|
seed, |
|
randomize_seed, |
|
input_im, |
|
aligned, |
|
upscale_factor, |
|
num_inference_steps, |
|
], |
|
outputs=[result, file], |
|
show_api=False, |
|
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.queue() |
|
demo.launch(state_session_capacity=15, show_api=False, share=False) |