Spaces:
doevent
/
Running on Zero

File size: 14,151 Bytes
1b8b226
e0edc6d
 
6ee52df
0d4c368
1b8b226
 
bfc1040
1b8b226
 
 
bfc1040
1b8b226
 
 
 
 
 
 
bfc1040
1b8b226
 
cf5e6bf
1b8b226
 
 
cf5e6bf
1b8b226
 
 
 
3b1fe09
1b8b226
9a668a2
6ee52df
9f5f67d
 
 
 
 
 
 
 
 
 
1b8b226
 
 
38e388c
 
 
 
 
 
 
 
 
 
 
 
6fe04b4
 
5afc7ad
1b8b226
c19a747
ad47941
1b8b226
 
 
3dc9cef
c19a747
 
1b8b226
 
 
 
 
3dc9cef
 
1b8b226
 
 
930aadb
3dc9cef
 
3cd5bc5
930aadb
3dc9cef
 
1b8b226
 
 
 
 
 
 
 
 
 
 
 
 
 
15563ba
1b8b226
 
 
 
 
6fe04b4
1b8b226
bfc1040
 
 
595f913
1b8b226
 
8ea5b1f
5320385
8ea5b1f
 
 
3b1fe09
8ea5b1f
1b8b226
 
8ea5b1f
 
 
 
 
 
 
 
 
 
 
 
 
 
797cd30
5320385
797cd30
 
 
 
8ea5b1f
5320385
8ea5b1f
 
 
5cd4a52
bfc1040
9c41d8f
bfc1040
 
 
 
 
 
 
 
 
 
 
 
82e4949
 
 
 
4cb280a
 
 
 
 
82e4949
bfc1040
3b1fe09
 
 
5320385
 
bfc1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad47941
 
4ca94b8
ad47941
 
4ca94b8
ad47941
301c3a1
ad47941
 
 
 
 
 
 
 
 
 
4ca94b8
ad47941
301c3a1
ad47941
 
4ca94b8
ad47941
301c3a1
ad47941
 
bfc1040
 
 
 
 
 
9c41d8f
 
 
 
 
 
 
 
 
 
 
 
1b8b226
 
bfc1040
 
 
 
 
 
 
 
 
 
5cd4a52
3bd265f
bfc1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c41d8f
bfc1040
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc1702b
cee2118
 
bfc1040
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
    os.environ['SPACES_ZERO_GPU'] = "1"
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
import spaces
import cv2
import gradio as gr
import random
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils import img2tensor, tensor2img
from gradio_imageslider import ImageSlider
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer

from lightning_models.mmse_rectified_flow import MMSERectifiedFlow

torch.set_grad_enabled(False)

MAX_SEED = 1000000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

os.makedirs('pretrained_models', exist_ok=True)
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
    os.system(
        "wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth")

# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, half=half)

pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device)

face_helper_dummy = FaceRestoreHelper(
    1,
    face_size=512,
    crop_ratio=(1, 1),
    det_model='retinaface_resnet50',
    save_ext='png',
    use_parse=True,
    device=device,
    model_rootpath=None)

os.makedirs('output', exist_ok=True)


def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
    source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
    dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
    x_t_next = source_dist_samples.clone()
    t_one = torch.ones(x.shape[0], device=device)
    for i in range(num_flow_steps):
        num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
        v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
        x_t_next = x_t_next.clone() + v_t_next * dt

    return x_t_next.clip(0, 1).to(torch.float32)

@torch.inference_mode()
@spaces.GPU()
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
    face_helper.clean_all()
    if has_aligned:  # the inputs are already aligned
        img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
        face_helper.cropped_faces = [img]
    else:
        face_helper.read_image(img)
        face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
        # eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
        # TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
        # align and warp each face
        face_helper.align_warp_face()
    # face restoration
    for cropped_face in face_helper.cropped_faces:
        # prepare data
        h, w = cropped_face.shape[0], cropped_face.shape[1]
        cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
        cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
        cropped_face_t = cropped_face_t.unsqueeze(0).to(device)

        dummy_x = torch.zeros_like(cropped_face_t)
        # with torch.autocast("cuda", dtype=torch.bfloat16):
        output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
        restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
        # restored_face = cropped_face
        restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR)


        restored_face = restored_face.astype('uint8')
        face_helper.add_restored_face(restored_face)

    if not has_aligned and paste_back:
        # upsample the background
        if upsampler is not None:
            # Now only support RealESRGAN for upsampling background
            bg_img = upsampler.enhance(img, outscale=scale)[0]
        else:
            bg_img = None

        face_helper.get_inverse_affine(None)
        # paste each restored face to the input image
        restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
        return face_helper.cropped_faces, face_helper.restored_faces, restored_img
    else:
        return face_helper.cropped_faces, face_helper.restored_faces, None


@torch.inference_mode()
@spaces.GPU()
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    torch.manual_seed(seed)
    if scale > 4:
        scale = 4  # avoid too large scale value
    img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
    if len(img.shape) == 2:  # for gray inputs
        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

    h, w = img.shape[0:2]
    if h > 4500 or w > 4500:
        print('Image size too large.')
        return None, None

    if h < 300:
        img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)

    face_helper = FaceRestoreHelper(
        scale,
        face_size=512,
        crop_ratio=(1, 1),
        det_model='retinaface_resnet50',
        save_ext='png',
        use_parse=True,
        device=device,
        model_rootpath=None)

    has_aligned = True if aligned == 'Yes' else False
    _, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
                                                     paste_back=True, num_flow_steps=num_flow_steps, scale=scale)
    if has_aligned:
        output = restored_aligned[0]
    else:
        output = restored_img

    save_path = f'output/out.png'
    cv2.imwrite(save_path, output)

    output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
    h, w = output.shape[0:2]
    orig_input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    orig_input = cv2.resize(orig_input, (h, w), interpolation=cv2.INTER_LINEAR)
    return [[orig_input, output, seed], save_path]

intro = """
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h2>
<h3 style="margin-bottom: 10px; text-align: center;">
    <a href="https://arxiv.org/abs/2410.00418">[Paper]</a>&nbsp;|&nbsp;
    <a href="https://pmrf-ml.github.io/">[Project Page]</a>&nbsp;|&nbsp;
    <a href="https://github.com/ohayonguy/PMRF">[Code]</a>
</h3>
"""
markdown_top = """
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418). 

Please refer to our project's page for more details: https://pmrf-ml.github.io/.

---

You may use this demo to enhance the quality of any image which contains faces.

1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below. 
2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.

*Notes*: 

1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
2. Images that are too large won't work due to memory constraints.
"""

#
# title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration"
#
# description = r"""
# Gradio demo for the blind face image restoration version of <a href='https://arxiv.org/abs/2410.00418' target='_blank'><b>Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</b></a>.
#
# Please refer to our project's page for more details: https://pmrf-ml.github.io/.
#
# ---
#
# You may use this demo to enhance the quality of any image which contains faces.
#
# 1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below.
# 2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.
#
# <b>NOTEs</b>:
#
# 1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
# 2. Images that are too large won't work due to memory constraints.
# """


article = r"""

If you find our work useful, please help to ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF)

📝 **Citation**

If our work is useful for your research, please consider citing:
```bibtex
@article{ohayon2024pmrf,
  author    = {Guy Ohayon and Tomer Michaeli and Michael Elad},
  title     = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration},
  journal   = {arXiv preprint arXiv:2410.00418},
  year      = {2024},
  url       = {https://arxiv.org/abs/2410.00418}
}
```

📋 **License**

This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>. 
Redistribution and use for non-commercial purposes should follow this license.

📧 **Contact**

If you have any questions, please feel free to contact me at <b>[email protected]</b>.
"""

css = """
#col-container {
    margin: 0 auto;
    max-width: 512px;
}
#run-button {
    background-color: #FFA500;  /* Orange */
    color: white;
    border: none;
    padding: 10px 24px;
    font-size: 16px;
    cursor: pointer;
    border-radius: 8px;  /* Optional: Makes the button corners rounded */
}
#run-button:hover {
    background-color: #e69500;  /* Darker orange on hover */
}
"""



with gr.Blocks(css=css) as demo:
    gr.HTML(intro)
    gr.Markdown(markdown_top)

    with gr.Row():
        run_button = gr.Button(value="Run")

    with gr.Row():
        with gr.Column(scale=2):
            input_im = gr.Image(label="Input Image", type="filepath")
        with gr.Column(scale=1):
            num_inference_steps = gr.Slider(
                label="Number of Inference Steps",
                minimum=1,
                maximum=200,
                step=1,
                value=25,
            )
            upscale_factor = gr.Slider(
                label="Scale factor for the background upsampler. Applicable only to non-aligned face images.",
                minimum=1,
                maximum=4,
                step=0.1,
                value=1,
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            aligned = gr.Checkbox(label="The input is an aligned face image", value=True)

    with gr.Row():
        result = ImageSlider(label="Input / Output", type="numpy", interactive=True)
    with gr.Row():
        file = gr.File(label="Download the output image")

    # examples = gr.Examples(
    #     examples=[
    #     #    [42, False, "examples/image_1.jpg", 28, 4, 0.6],
    #     #     [42, False, "examples/image_2.jpg", 28, 4, 0.6],
    #     #    [42, False, "examples/image_3.jpg", 28, 4, 0.6],
    #     #     [42, False, "examples/image_4.jpg", 28, 4, 0.6],
    #     #    [42, False, "examples/image_5.jpg", 28, 4, 0.6],
    #     #    [42, False, "examples/image_6.jpg", 28, 4, 0.6],
    #     ],
    #     inputs=[
    #         seed,
    #         randomize_seed,
    #         input_im,
    #         num_inference_steps,
    #         upscale_factor,
    #         controlnet_conditioning_scale,
    #     ],
    #     fn=infer,
    #     outputs=result,
    #     cache_examples="lazy",
    # )

    # examples = gr.Examples(
    #     examples=[
    #         #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_2.jpg", 28, 4, 0.6],
    #         #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
    #         #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_5.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_6.jpg", 28, 4, 0.6],
    #         [42, False, "examples/image_7.jpg", 28, 4, 0.6],
    #     ],
    #     inputs=[
    #         seed,
    #         randomize_seed,
    #         input_im,
    #         num_inference_steps,
    #         upscale_factor,
    #         controlnet_conditioning_scale,
    #     ],
    # )

    gr.Markdown(article)
    gr.on(
        [run_button.click],
        fn=inference,
        inputs=[
            seed,
            randomize_seed,
            input_im,
            aligned,
            upscale_factor,
            num_inference_steps,
        ],
        outputs=[result, file],
        show_api=False,
        # show_progress="minimal",
    )


# demo = gr.Interface(
#     inference, [
#         gr.Image(type="filepath", label="Input"),
#         gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
#         gr.Slider(label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, value=2, step=0.1, interactive=True),
#         gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25),
#     ], [
#         gr.ImageSlider(type="numpy", label="Input / Output", interactive=True),
#         gr.File(label="Download the output image")
#     ],
#     title=title,
#     description=description,
#     article=article,
# )


demo.queue()
demo.launch(state_session_capacity=15, show_api=False, share=False)