File size: 14,151 Bytes
1b8b226 e0edc6d 6ee52df 0d4c368 1b8b226 bfc1040 1b8b226 bfc1040 1b8b226 bfc1040 1b8b226 cf5e6bf 1b8b226 cf5e6bf 1b8b226 3b1fe09 1b8b226 9a668a2 6ee52df 9f5f67d 1b8b226 38e388c 6fe04b4 5afc7ad 1b8b226 c19a747 ad47941 1b8b226 3dc9cef c19a747 1b8b226 3dc9cef 1b8b226 930aadb 3dc9cef 3cd5bc5 930aadb 3dc9cef 1b8b226 15563ba 1b8b226 6fe04b4 1b8b226 bfc1040 595f913 1b8b226 8ea5b1f 5320385 8ea5b1f 3b1fe09 8ea5b1f 1b8b226 8ea5b1f 797cd30 5320385 797cd30 8ea5b1f 5320385 8ea5b1f 5cd4a52 bfc1040 9c41d8f bfc1040 82e4949 4cb280a 82e4949 bfc1040 3b1fe09 5320385 bfc1040 ad47941 4ca94b8 ad47941 4ca94b8 ad47941 301c3a1 ad47941 4ca94b8 ad47941 301c3a1 ad47941 4ca94b8 ad47941 301c3a1 ad47941 bfc1040 9c41d8f 1b8b226 bfc1040 5cd4a52 3bd265f bfc1040 9c41d8f bfc1040 fc1702b cee2118 bfc1040 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
import os
if os.getenv('SPACES_ZERO_GPU') == "true":
os.environ['SPACES_ZERO_GPU'] = "1"
os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
import spaces
import cv2
import gradio as gr
import random
import torch
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from basicsr.utils import img2tensor, tensor2img
from gradio_imageslider import ImageSlider
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from realesrgan.utils import RealESRGANer
from lightning_models.mmse_rectified_flow import MMSERectifiedFlow
torch.set_grad_enabled(False)
MAX_SEED = 1000000
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs('pretrained_models', exist_ok=True)
realesr_model_path = 'pretrained_models/RealESRGAN_x4plus.pth'
if not os.path.exists(realesr_model_path):
os.system(
"wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -O pretrained_models/RealESRGAN_x4plus.pth")
# background enhancer with RealESRGAN
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
half = True if torch.cuda.is_available() else False
upsampler = RealESRGANer(scale=4, model_path=realesr_model_path, model=model, tile=400, tile_pad=10, pre_pad=0, half=half)
pmrf = MMSERectifiedFlow.from_pretrained('ohayonguy/PMRF_blind_face_image_restoration').to(device=device)
face_helper_dummy = FaceRestoreHelper(
1,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
os.makedirs('output', exist_ok=True)
def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, device):
source_dist_samples = pmrf_model.create_source_distribution_samples(x, y, non_noisy_z0)
dt = (1.0 / num_flow_steps) * (1.0 - pmrf_model.hparams.eps)
x_t_next = source_dist_samples.clone()
t_one = torch.ones(x.shape[0], device=device)
for i in range(num_flow_steps):
num_t = (i / num_flow_steps) * (1.0 - pmrf_model.hparams.eps) + pmrf_model.hparams.eps
v_t_next = pmrf_model(x_t=x_t_next, t=t_one * num_t, y=y).to(x_t_next.dtype)
x_t_next = x_t_next.clone() + v_t_next * dt
return x_t_next.clip(0, 1).to(torch.float32)
@torch.inference_mode()
@spaces.GPU()
def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
face_helper.clean_all()
if has_aligned: # the inputs are already aligned
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
face_helper.cropped_faces = [img]
else:
face_helper.read_image(img)
face_helper.get_face_landmarks_5(only_center_face=only_center_face, eye_dist_threshold=5)
# eye_dist_threshold=5: skip faces whose eye distance is smaller than 5 pixels
# TODO: even with eye_dist_threshold, it will still introduce wrong detections and restorations.
# align and warp each face
face_helper.align_warp_face()
# face restoration
for cropped_face in face_helper.cropped_faces:
# prepare data
h, w = cropped_face.shape[0], cropped_face.shape[1]
cropped_face = cv2.resize(cropped_face, (512, 512), interpolation=cv2.INTER_LINEAR)
cropped_face_t = img2tensor(cropped_face / 255., bgr2rgb=True, float32=True)
cropped_face_t = cropped_face_t.unsqueeze(0).to(device)
dummy_x = torch.zeros_like(cropped_face_t)
# with torch.autocast("cuda", dtype=torch.bfloat16):
output = generate_reconstructions(pmrf, dummy_x, cropped_face_t, None, num_flow_steps, device)
restored_face = tensor2img(output.to(torch.float32).squeeze(0), rgb2bgr=True, min_max=(0, 1))
# restored_face = cropped_face
restored_face = cv2.resize(restored_face, (h, w), interpolation=cv2.INTER_LINEAR)
restored_face = restored_face.astype('uint8')
face_helper.add_restored_face(restored_face)
if not has_aligned and paste_back:
# upsample the background
if upsampler is not None:
# Now only support RealESRGAN for upsampling background
bg_img = upsampler.enhance(img, outscale=scale)[0]
else:
bg_img = None
face_helper.get_inverse_affine(None)
# paste each restored face to the input image
restored_img = face_helper.paste_faces_to_input_image(upsample_img=bg_img)
return face_helper.cropped_faces, face_helper.restored_faces, restored_img
else:
return face_helper.cropped_faces, face_helper.restored_faces, None
@torch.inference_mode()
@spaces.GPU()
def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
torch.manual_seed(seed)
if scale > 4:
scale = 4 # avoid too large scale value
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 2: # for gray inputs
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
h, w = img.shape[0:2]
if h > 4500 or w > 4500:
print('Image size too large.')
return None, None
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
face_helper = FaceRestoreHelper(
scale,
face_size=512,
crop_ratio=(1, 1),
det_model='retinaface_resnet50',
save_ext='png',
use_parse=True,
device=device,
model_rootpath=None)
has_aligned = True if aligned == 'Yes' else False
_, restored_aligned, restored_img = enhance_face(img, face_helper, has_aligned, only_center_face=False,
paste_back=True, num_flow_steps=num_flow_steps, scale=scale)
if has_aligned:
output = restored_aligned[0]
else:
output = restored_img
save_path = f'output/out.png'
cv2.imwrite(save_path, output)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
h, w = output.shape[0:2]
orig_input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
orig_input = cv2.resize(orig_input, (h, w), interpolation=cv2.INTER_LINEAR)
return [[orig_input, output, seed], save_path]
intro = """
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h2>
<h3 style="margin-bottom: 10px; text-align: center;">
<a href="https://arxiv.org/abs/2410.00418">[Paper]</a> |
<a href="https://pmrf-ml.github.io/">[Project Page]</a> |
<a href="https://github.com/ohayonguy/PMRF">[Code]</a>
</h3>
"""
markdown_top = """
Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418).
Please refer to our project's page for more details: https://pmrf-ml.github.io/.
---
You may use this demo to enhance the quality of any image which contains faces.
1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below.
2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.
*Notes*:
1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
2. Images that are too large won't work due to memory constraints.
"""
#
# title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration"
#
# description = r"""
# Gradio demo for the blind face image restoration version of <a href='https://arxiv.org/abs/2410.00418' target='_blank'><b>Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</b></a>.
#
# Please refer to our project's page for more details: https://pmrf-ml.github.io/.
#
# ---
#
# You may use this demo to enhance the quality of any image which contains faces.
#
# 1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below.
# 2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.
#
# <b>NOTEs</b>:
#
# 1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
# 2. Images that are too large won't work due to memory constraints.
# """
article = r"""
If you find our work useful, please help to ⭐ our <a href='https://github.com/ohayonguy/PMRF' target='_blank'>GitHub repository</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/ohayonguy/PMRF?style=social)](https://github.com/ohayonguy/PMRF)
📝 **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@article{ohayon2024pmrf,
author = {Guy Ohayon and Tomer Michaeli and Michael Elad},
title = {Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration},
journal = {arXiv preprint arXiv:2410.00418},
year = {2024},
url = {https://arxiv.org/abs/2410.00418}
}
```
📋 **License**
This project is released under the <a rel="license" href="https://github.com/ohayonguy/PMRF/blob/master/LICENSE">MIT license</a>.
Redistribution and use for non-commercial purposes should follow this license.
📧 **Contact**
If you have any questions, please feel free to contact me at <b>[email protected]</b>.
"""
css = """
#col-container {
margin: 0 auto;
max-width: 512px;
}
#run-button {
background-color: #FFA500; /* Orange */
color: white;
border: none;
padding: 10px 24px;
font-size: 16px;
cursor: pointer;
border-radius: 8px; /* Optional: Makes the button corners rounded */
}
#run-button:hover {
background-color: #e69500; /* Darker orange on hover */
}
"""
with gr.Blocks(css=css) as demo:
gr.HTML(intro)
gr.Markdown(markdown_top)
with gr.Row():
run_button = gr.Button(value="Run")
with gr.Row():
with gr.Column(scale=2):
input_im = gr.Image(label="Input Image", type="filepath")
with gr.Column(scale=1):
num_inference_steps = gr.Slider(
label="Number of Inference Steps",
minimum=1,
maximum=200,
step=1,
value=25,
)
upscale_factor = gr.Slider(
label="Scale factor for the background upsampler. Applicable only to non-aligned face images.",
minimum=1,
maximum=4,
step=0.1,
value=1,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
aligned = gr.Checkbox(label="The input is an aligned face image", value=True)
with gr.Row():
result = ImageSlider(label="Input / Output", type="numpy", interactive=True)
with gr.Row():
file = gr.File(label="Download the output image")
# examples = gr.Examples(
# examples=[
# # [42, False, "examples/image_1.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_3.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_4.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
# # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
# ],
# inputs=[
# seed,
# randomize_seed,
# input_im,
# num_inference_steps,
# upscale_factor,
# controlnet_conditioning_scale,
# ],
# fn=infer,
# outputs=result,
# cache_examples="lazy",
# )
# examples = gr.Examples(
# examples=[
# #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
# [42, False, "examples/image_2.jpg", 28, 4, 0.6],
# #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
# #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
# [42, False, "examples/image_5.jpg", 28, 4, 0.6],
# [42, False, "examples/image_6.jpg", 28, 4, 0.6],
# [42, False, "examples/image_7.jpg", 28, 4, 0.6],
# ],
# inputs=[
# seed,
# randomize_seed,
# input_im,
# num_inference_steps,
# upscale_factor,
# controlnet_conditioning_scale,
# ],
# )
gr.Markdown(article)
gr.on(
[run_button.click],
fn=inference,
inputs=[
seed,
randomize_seed,
input_im,
aligned,
upscale_factor,
num_inference_steps,
],
outputs=[result, file],
show_api=False,
# show_progress="minimal",
)
# demo = gr.Interface(
# inference, [
# gr.Image(type="filepath", label="Input"),
# gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
# gr.Slider(label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, value=2, step=0.1, interactive=True),
# gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25),
# ], [
# gr.ImageSlider(type="numpy", label="Input / Output", interactive=True),
# gr.File(label="Download the output image")
# ],
# title=title,
# description=description,
# article=article,
# )
demo.queue()
demo.launch(state_session_capacity=15, show_api=False, share=False) |