Spaces:
doevent
/
Running on Zero

ohayonguy commited on
Commit
bfc1040
1 Parent(s): 3dc9cef

improved interface

Browse files
Files changed (2) hide show
  1. app.py +168 -27
  2. requirements.txt +2 -1
app.py CHANGED
@@ -5,9 +5,12 @@ os.environ['K_DIFFUSION_USE_COMPILE'] = "0"
5
  import spaces
6
  import cv2
7
  import gradio as gr
 
8
  import torch
9
  from basicsr.archs.srvgg_arch import SRVGGNetCompact
10
  from basicsr.utils import img2tensor, tensor2img
 
 
11
  from facexlib.utils.face_restoration_helper import FaceRestoreHelper
12
  from realesrgan.utils import RealESRGANer
13
 
@@ -15,7 +18,7 @@ from lightning_models.mmse_rectified_flow import MMSERectifiedFlow
15
 
16
  torch.set_grad_enabled(False)
17
 
18
-
19
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
20
 
21
  os.makedirs('pretrained_models', exist_ok=True)
@@ -60,7 +63,6 @@ def generate_reconstructions(pmrf_model, x, y, non_noisy_z0, num_flow_steps, dev
60
  @spaces.GPU()
61
  def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
62
  face_helper.clean_all()
63
-
64
  if has_aligned: # the inputs are already aligned
65
  img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
66
  face_helper.cropped_faces = [img]
@@ -108,7 +110,10 @@ def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face
108
 
109
  @torch.inference_mode()
110
  @spaces.GPU()
111
- def inference(img, aligned, scale, num_flow_steps):
 
 
 
112
  if scale > 4:
113
  scale = 4 # avoid too large scale value
114
  img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
@@ -145,13 +150,20 @@ def inference(img, aligned, scale, num_flow_steps):
145
  cv2.imwrite(save_path, output)
146
 
147
  output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
148
- return output, save_path
149
-
150
-
151
- title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration"
152
-
153
- description = r"""
154
- Gradio demo for the blind face image restoration version of <a href='https://arxiv.org/abs/2410.00418' target='_blank'><b>Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</b></a>.
 
 
 
 
 
 
 
155
 
156
  Please refer to our project's page for more details: https://pmrf-ml.github.io/.
157
 
@@ -162,12 +174,33 @@ You may use this demo to enhance the quality of any image which contains faces.
162
  1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below.
163
  2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.
164
 
165
- <b>NOTEs</b>:
166
 
167
  1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
168
  2. Images that are too large won't work due to memory constraints.
169
  """
170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
  article = r"""
173
 
@@ -196,24 +229,132 @@ Redistribution and use for non-commercial purposes should follow this license.
196
 
197
  If you have any questions, please feel free to contact me at <b>[email protected]</b>.
198
  """
199
- css = r"""
 
 
 
 
 
200
  """
201
 
202
- demo = gr.Interface(
203
- inference, [
204
- gr.Image(type="filepath", label="Input"),
205
- gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
206
- gr.Slider(label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, value=2, step=0.1, interactive=True),
207
- gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25),
208
- ], [
209
- gr.Image(type="numpy", label="Output"),
210
- gr.File(label="Download the output image")
211
- ],
212
- title=title,
213
- description=description,
214
- article=article,
215
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
 
218
  demo.queue()
219
- demo.launch(state_session_capacity=15)
 
5
  import spaces
6
  import cv2
7
  import gradio as gr
8
+ import random
9
  import torch
10
  from basicsr.archs.srvgg_arch import SRVGGNetCompact
11
  from basicsr.utils import img2tensor, tensor2img
12
+ from gradio_imageslider import ImageSlider
13
+ from pytorch_lightning.utilities.seed import seed_everything
14
  from facexlib.utils.face_restoration_helper import FaceRestoreHelper
15
  from realesrgan.utils import RealESRGANer
16
 
 
18
 
19
  torch.set_grad_enabled(False)
20
 
21
+ MAX_SEED = 1000000
22
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
 
24
  os.makedirs('pretrained_models', exist_ok=True)
 
63
  @spaces.GPU()
64
  def enhance_face(img, face_helper, has_aligned, num_flow_steps, only_center_face=False, paste_back=True, scale=2):
65
  face_helper.clean_all()
 
66
  if has_aligned: # the inputs are already aligned
67
  img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR)
68
  face_helper.cropped_faces = [img]
 
110
 
111
  @torch.inference_mode()
112
  @spaces.GPU()
113
+ def inference(seed, randomize_seed, img, aligned, scale, num_flow_steps):
114
+ if randomize_seed:
115
+ seed = random.randint(0, MAX_SEED)
116
+ seed_everything(seed)
117
  if scale > 4:
118
  scale = 4 # avoid too large scale value
119
  img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
 
150
  cv2.imwrite(save_path, output)
151
 
152
  output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
153
+ orig_input = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
154
+ orig_input = cv2.resize(orig_input, (output.shape[0], output.shape[1]), interpolation=cv2.INTER_LINEAR)
155
+ return [[orig_input, output, seed], save_path]
156
+
157
+ intro = """
158
+ <h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;">Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</h2>
159
+ <h3 style="margin-bottom: 10px; text-align: center;">
160
+ <a href="https://arxiv.org/abs/2410.00418">[Paper]</a>&nbsp;|&nbsp;
161
+ <a href="https://pmrf-ml.github.io/">[Project Page]</a>&nbsp;|&nbsp;
162
+ <a href="https://github.com/ohayonguy/PMRF">[Code]</a>
163
+ </h3>
164
+ """
165
+ markdown_top = """
166
+ Gradio demo for the blind face image restoration version of [Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration](https://arxiv.org/abs/2410.00418).
167
 
168
  Please refer to our project's page for more details: https://pmrf-ml.github.io/.
169
 
 
174
  1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below.
175
  2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.
176
 
177
+ *Notes*:
178
 
179
  1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
180
  2. Images that are too large won't work due to memory constraints.
181
  """
182
 
183
+ #
184
+ # title = "Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration"
185
+ #
186
+ # description = r"""
187
+ # Gradio demo for the blind face image restoration version of <a href='https://arxiv.org/abs/2410.00418' target='_blank'><b>Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration</b></a>.
188
+ #
189
+ # Please refer to our project's page for more details: https://pmrf-ml.github.io/.
190
+ #
191
+ # ---
192
+ #
193
+ # You may use this demo to enhance the quality of any image which contains faces.
194
+ #
195
+ # 1. If your input image has only one face and it is aligned, please mark "Yes" to the answer below.
196
+ # 2. Otherwise, your image may contain any number of faces (>=1), and the quality of each face will be enhanced separately.
197
+ #
198
+ # <b>NOTEs</b>:
199
+ #
200
+ # 1. Our model is designed to restore aligned face images, but here we incorporate mechanisms that allow restoring the quality of any image that contains any number of faces. Thus, the resulting quality of such general images is not guaranteed.
201
+ # 2. Images that are too large won't work due to memory constraints.
202
+ # """
203
+
204
 
205
  article = r"""
206
 
 
229
 
230
  If you have any questions, please feel free to contact me at <b>[email protected]</b>.
231
  """
232
+
233
+ css = """
234
+ #col-container {
235
+ margin: 0 auto;
236
+ max-width: 512px;
237
+ }
238
  """
239
 
240
+
241
+
242
+ with gr.Blocks(css=css) as demo:
243
+ gr.HTML(intro)
244
+ gr.Markdown(markdown_top)
245
+
246
+ with gr.Row():
247
+ run_button = gr.Button(value="Run")
248
+
249
+ with gr.Row():
250
+ with gr.Column(scale=4):
251
+ input_im = gr.Image(label="Input Image", type="pil")
252
+ with gr.Column(scale=1):
253
+ num_inference_steps = gr.Slider(
254
+ label="Number of Inference Steps",
255
+ minimum=1,
256
+ maximum=200,
257
+ step=1,
258
+ value=25,
259
+ )
260
+ upscale_factor = gr.Slider(
261
+ label="Scale factor for the background upsampler. Applicable only to non-aligned face images.",
262
+ minimum=1,
263
+ maximum=4,
264
+ step=0.1,
265
+ value=1,
266
+ )
267
+ seed = gr.Slider(
268
+ label="Seed",
269
+ minimum=0,
270
+ maximum=MAX_SEED,
271
+ step=1,
272
+ value=42,
273
+ )
274
+
275
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
276
+ aligned = gr.Checkbox(label="The input is an aligned face image", value=True)
277
+
278
+ with gr.Row():
279
+ result = ImageSlider(label="Input / Output", type="numpy", interactive=True)
280
+ with gr.Row():
281
+ file = gr.File(label="Download the output image")
282
+
283
+ # examples = gr.Examples(
284
+ # examples=[
285
+ # # [42, False, "examples/image_1.jpg", 28, 4, 0.6],
286
+ # # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
287
+ # # [42, False, "examples/image_3.jpg", 28, 4, 0.6],
288
+ # # [42, False, "examples/image_4.jpg", 28, 4, 0.6],
289
+ # # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
290
+ # # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
291
+ # ],
292
+ # inputs=[
293
+ # seed,
294
+ # randomize_seed,
295
+ # input_im,
296
+ # num_inference_steps,
297
+ # upscale_factor,
298
+ # controlnet_conditioning_scale,
299
+ # ],
300
+ # fn=infer,
301
+ # outputs=result,
302
+ # cache_examples="lazy",
303
+ # )
304
+
305
+ # examples = gr.Examples(
306
+ # examples=[
307
+ # #[42, False, "examples/image_1.jpg", 28, 4, 0.6],
308
+ # [42, False, "examples/image_2.jpg", 28, 4, 0.6],
309
+ # #[42, False, "examples/image_3.jpg", 28, 4, 0.6],
310
+ # #[42, False, "examples/image_4.jpg", 28, 4, 0.6],
311
+ # [42, False, "examples/image_5.jpg", 28, 4, 0.6],
312
+ # [42, False, "examples/image_6.jpg", 28, 4, 0.6],
313
+ # [42, False, "examples/image_7.jpg", 28, 4, 0.6],
314
+ # ],
315
+ # inputs=[
316
+ # seed,
317
+ # randomize_seed,
318
+ # input_im,
319
+ # num_inference_steps,
320
+ # upscale_factor,
321
+ # controlnet_conditioning_scale,
322
+ # ],
323
+ # )
324
+
325
+
326
+ gr.on(
327
+ [run_button.click],
328
+ fn=inference,
329
+ inputs=[
330
+ seed,
331
+ randomize_seed,
332
+ input_im,
333
+ aligned,
334
+ upscale_factor,
335
+ num_inference_steps,
336
+ ],
337
+ outputs=[result, file],
338
+ show_api=False,
339
+ # show_progress="minimal",
340
+ )
341
+
342
+
343
+ # demo = gr.Interface(
344
+ # inference, [
345
+ # gr.Image(type="filepath", label="Input"),
346
+ # gr.Radio(['Yes', 'No'], type="value", value='aligned', label='Is the input an aligned face image?'),
347
+ # gr.Slider(label="Scale factor for the background upsampler. Applicable only to non-aligned face images.", minimum=1, maximum=4, value=2, step=0.1, interactive=True),
348
+ # gr.Number(label="Number of flow steps. A higher value should result in better image quality, but will inference will take a longer time.", value=25),
349
+ # ], [
350
+ # gr.ImageSlider(type="numpy", label="Input / Output", interactive=True),
351
+ # gr.File(label="Download the output image")
352
+ # ],
353
+ # title=title,
354
+ # description=description,
355
+ # article=article,
356
+ # )
357
 
358
 
359
  demo.queue()
360
+ demo.launch(state_session_capacity=15, show_api=False, share=False)
requirements.txt CHANGED
@@ -20,4 +20,5 @@ timm
20
  torchmetrics
21
  torch-fidelity==0.3.0
22
  -f https://shi-labs.com/natten/wheels/
23
- natten==0.17.1+torch240cu121
 
 
20
  torchmetrics
21
  torch-fidelity==0.3.0
22
  -f https://shi-labs.com/natten/wheels/
23
+ natten==0.17.1+torch240cu121
24
+ gradio-imageslider