neural-style / client.py
dogeplusplus's picture
Update app and add example model.
c8cd80b
raw
history blame
2.06 kB
import cv2
import grpc
import tensorflow as tf
import tensorflow_hub as hub
import numpy as np
from tensorflow_serving.apis import predict_pb2, prediction_service_pb2_grpc
hub_module = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
def style_transfer_serving(stub, content, style, resize=None):
content = np.array(content, dtype=np.float32) / 255.
style = np.array(style, dtype=np.float32) / 255.
if resize:
content = cv2.resize(content, (512, 512))
style = cv2.resize(style, (512, 512))
image_proto = tf.make_tensor_proto(content[np.newaxis, ...] / 255.)
style_proto = tf.make_tensor_proto(style[np.newaxis, ...] / 255.)
stylized_image = hub_module(tf.constant(content[np.newaxis, ...]), tf.constant(style[np.newaxis, ...]))
# request = predict_pb2.PredictRequest()
# request.model_spec.name = 'style'
# request.inputs['placeholder'].CopyFrom(image_proto)
# request.inputs['placeholder_1'].CopyFrom(style_proto)
# resp = stub.Predict(request)
# stylized_image = tf.make_ndarray(resp.outputs['output_0'])[0]
stylized_image = stylized_image[0] * 255
stylized_image = np.array(stylized_image, dtype=np.uint8)
stylized_image = stylized_image
return stylized_image
if __name__ == "__main__":
options = [
('grpc.max_send_message_length', 200 * 1024 * 1024),
('grpc.max_receive_message_length', 200 * 1024 * 1024)
]
# channel = grpc.insecure_channel('localhost:8500', options=options)
# stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
file = tf.io.read_file('/home/albert/github/neural-style/assets/template_styles/pebbles.jpg')
style = tf.io.decode_image(file)
file = tf.io.read_file('/home/albert/Downloads/sam_and_nyx/sam_stairs.jpeg')
content = tf.io.decode_image(file)
stub = None
result = style_transfer_serving(stub, content, style)
import matplotlib.pyplot as plt
plt.imshow(result[0])
plt.show()