File size: 7,507 Bytes
28635a8
 
19a5c6d
 
8543178
28635a8
 
 
401487d
28635a8
 
5d29918
28635a8
 
7918fa4
28635a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401487d
28635a8
 
 
 
 
401487d
28635a8
401487d
 
 
28635a8
401487d
 
28635a8
401487d
 
 
28635a8
 
 
 
 
 
19a5c6d
456c4fd
09ad9df
28635a8
19a5c6d
8f4842e
28635a8
 
 
 
 
f2d7c25
28635a8
f2d7c25
 
28635a8
f2d7c25
 
28635a8
 
 
 
 
937c9f4
19a5c6d
28635a8
 
401487d
28635a8
 
8f4842e
28635a8
 
a0371ce
28635a8
 
02e8cce
401487d
28635a8
f851da6
1c3ac56
8f4842e
28635a8
 
 
8f4842e
 
 
 
a0371ce
8f4842e
 
94c4e02
28635a8
 
1ed82c3
4b9dd86
7562258
b7cb502
a6b3a3e
b7cb502
 
3cb617c
a6b3a3e
 
 
 
f28a9f2
1ed82c3
4b9dd86
 
 
 
8543178
 
06d63fe
8179587
4b9dd86
d5031b6
 
 
 
 
 
 
 
 
 
 
8179587
4603a26
 
8179587
 
 
 
 
14f5c60
 
 
 
6a7c1ab
8543178
28635a8
6f585ad
d5031b6
2776140
28635a8
 
 
 
f53bc46
87580f8
 
 
3cb617c
87580f8
 
b6fe238
28635a8
 
440bd6b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import transformers
from transformers import pipeline
import webbrowser
import openai
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_composting_details.txt"  # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'

openai.api_key = os.environ["OPENAI_API_KEY"]

# Attempt to load the necessary models and provide feedback on success or failure
try:
    retrieval_model = SentenceTransformer(retrieval_model_name)
    print("Models loaded successfully.")
except Exception as e:
    print(f"Failed to load models: {e}")

def load_and_preprocess_text(filename):
    """
    Load and preprocess text from a file, removing empty lines and stripping whitespace.
    """
    try:
        with open(filename, 'r', encoding='utf-8') as file:
            segments = [line.strip() for line in file if line.strip()]
        print("Text loaded and preprocessed successfully.")
        return segments
    except Exception as e:
        print(f"Failed to load or preprocess text: {e}")
        return []

segments = load_and_preprocess_text(filename)

def find_relevant_segment(user_query, segments):
    """
    Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
    This version finds the best match based on the content of the query.
    """
    try:
        # Lowercase the query for better matching
        lower_query = user_query.lower()
        
        # Encode the query and the segments
        query_embedding = retrieval_model.encode(lower_query)
        segment_embeddings = retrieval_model.encode(segments)
        
        # Compute cosine similarities between the query and the segments
        similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
        
        # Find the index of the most similar segment
        best_idx = similarities.argmax()
        
        # Return the most relevant segment
        return segments[best_idx]
    except Exception as e:
        print(f"Error in finding relevant segment: {e}")
        return ""

def generate_response(user_query, relevant_segment):
    """
    Generate a response emphasizing the bot's capability to provide information related to composting food.
    """
    
    try:
        system_message = "You are a chatbot specialized in providing information about food composting tips, tricks, and basics."
        user_message = f"Here's the information on composting: {relevant_segment}"
        messages = [
            {"role": "system", "content": system_message},
            {"role": "user", "content": user_message}
        ]
        response = openai.ChatCompletion.create(
            model="gpt-4o",
            messages=messages,
            max_tokens=200,
            temperature=0.5,
            top_p=1,
            frequency_penalty=0.5,
            presence_penalty=0.5
        )
        return response['choices'][0]['message']['content'].strip()
    except Exception as e:
        print(f"Error in generating response: {e}")
        return f"Error in generating response: {e}"


def query_model(question):
    """
    Process a question, find relevant information, and generate a response.
    """
    if question == "":
        return "Welcome to CompBot! Ask me anything about composting tips, tricks, and basics!"
    relevant_segment = find_relevant_segment(question, segments)
    if not relevant_segment:
        return "Could not find specific information. Please refine your question."
    response = generate_response(question, relevant_segment)
    return response

# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
<span style="color:#836953; font-size:24px; font-family:Roboto;">🌱Welcome to CompBot!</span>
""""""
## Your AI-driven assistant for all composting-related queries.
"""

topics = """
### Feel free to ask me anything from the topics below!
- Components of composting
- Green and brown materials
- The composting process 
- Common strategies
- Uses of compost
- Tips for successful composting
- Sustainability
"""

# Define the HTML iframe content
podcast_iframe = '''
    <div style="height:10px;"></div>
    <iframe style="border-radius:12px" 
    src="https://open.spotify.com/embed/episode/1Emjgqf8PfwD42kvyKvtfW?utm_source=generator&theme=0" 
    width="100%" height="152" frameBorder="0" 
    allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" loading="lazy"></iframe>
    <div style="height:20px;"></div>
    <iframe style="border-radius:12px" 
    src="https://open.spotify.com/embed/episode/6m83iwiAwCOu5yaW8LOT1v?utm_source=generator&theme=0" 
    width="100%" height="152" frameBorder="0" allowfullscreen="" 
    allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" loading="lazy"></iframe>
'''

youtube_iframe = '''
    <iframe width="560" height="315" src="https://www.youtube.com/embed/MryNKPPvFbk" frameborder="0" 
    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
'''

def display_image():
    return "https://huggingface.co/spaces/dogutcu/composting-how-tos/resolve/main/compbot.jpeg"


custom_css = """
<style>
    .textbox-question {
        background-color: #E8F0FE !important;  /* Light blue background */
    }
    .textbox-answer {
        background-color: #F1F8E9 !important;  /* Light green background */
    }
</style>
"""

theme = gr.themes.Base().set(
    background_fill_primary='#AFC9AD',  # Light cyan background
    background_fill_primary_dark='#AFC9AD',  # Dark teal background
    background_fill_secondary='#ffccbc',  # Light orange background
    background_fill_secondary_dark='#d84315',  # Dark orange background
    border_color_accent='#ffab40',  # Accent border color
    border_color_accent_dark='#ff6d00',  # Dark accent border color
    border_color_accent_subdued='#ff8a65',  # Subdued accent border color
    border_color_primary='#2a2a2a',  # Primary border color
    block_border_color='#2a2a2a',  # Block border color
    button_primary_background_fill='#2a2a2a',  # Primary button background color
    button_primary_background_fill_dark='#2a2a2a'  # Dark primary button background color
)
    
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
    gr.HTML(custom_css)
    gr.Image(display_image(), show_label = False, show_share_button = False, show_download_button = False, width=300, height=200)
    gr.Markdown(welcome_message)  # Display the formatted welcome message
    with gr.Row():
        with gr.Column():
            gr.Markdown(topics)  # Show the topics on the left side
            gr.HTML(youtube_iframe)  # Embed the iframe on the left side
        with gr.Row():
            with gr.Column():
                question = gr.Textbox(label="Your question", placeholder="What would you like to know?")
                answer = gr.Textbox(label="CompBot Response", placeholder="CompBot will respond here...", interactive=False, lines=16)
                submit_button = gr.Button("Submit")
                submit_button.click(fn=query_model, inputs=question, outputs=answer)
    

# Launch the Gradio app to allow user interaction
demo.launch(share=True)