Spaces:
Sleeping
Sleeping
File size: 7,507 Bytes
28635a8 19a5c6d 8543178 28635a8 401487d 28635a8 5d29918 28635a8 7918fa4 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 401487d 28635a8 19a5c6d 456c4fd 09ad9df 28635a8 19a5c6d 8f4842e 28635a8 f2d7c25 28635a8 f2d7c25 28635a8 f2d7c25 28635a8 937c9f4 19a5c6d 28635a8 401487d 28635a8 8f4842e 28635a8 a0371ce 28635a8 02e8cce 401487d 28635a8 f851da6 1c3ac56 8f4842e 28635a8 8f4842e a0371ce 8f4842e 94c4e02 28635a8 1ed82c3 4b9dd86 7562258 b7cb502 a6b3a3e b7cb502 3cb617c a6b3a3e f28a9f2 1ed82c3 4b9dd86 8543178 06d63fe 8179587 4b9dd86 d5031b6 8179587 4603a26 8179587 14f5c60 6a7c1ab 8543178 28635a8 6f585ad d5031b6 2776140 28635a8 f53bc46 87580f8 3cb617c 87580f8 b6fe238 28635a8 440bd6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import gradio as gr
from sentence_transformers import SentenceTransformer, util
import transformers
from transformers import pipeline
import webbrowser
import openai
import os
os.environ["TOKENIZERS_PARALLELISM"] = "false"
# Initialize paths and model identifiers for easy configuration and maintenance
filename = "output_composting_details.txt" # Path to the file storing chess-specific details
retrieval_model_name = 'output/sentence-transformer-finetuned/'
openai.api_key = os.environ["OPENAI_API_KEY"]
# Attempt to load the necessary models and provide feedback on success or failure
try:
retrieval_model = SentenceTransformer(retrieval_model_name)
print("Models loaded successfully.")
except Exception as e:
print(f"Failed to load models: {e}")
def load_and_preprocess_text(filename):
"""
Load and preprocess text from a file, removing empty lines and stripping whitespace.
"""
try:
with open(filename, 'r', encoding='utf-8') as file:
segments = [line.strip() for line in file if line.strip()]
print("Text loaded and preprocessed successfully.")
return segments
except Exception as e:
print(f"Failed to load or preprocess text: {e}")
return []
segments = load_and_preprocess_text(filename)
def find_relevant_segment(user_query, segments):
"""
Find the most relevant text segment for a user's query using cosine similarity among sentence embeddings.
This version finds the best match based on the content of the query.
"""
try:
# Lowercase the query for better matching
lower_query = user_query.lower()
# Encode the query and the segments
query_embedding = retrieval_model.encode(lower_query)
segment_embeddings = retrieval_model.encode(segments)
# Compute cosine similarities between the query and the segments
similarities = util.pytorch_cos_sim(query_embedding, segment_embeddings)[0]
# Find the index of the most similar segment
best_idx = similarities.argmax()
# Return the most relevant segment
return segments[best_idx]
except Exception as e:
print(f"Error in finding relevant segment: {e}")
return ""
def generate_response(user_query, relevant_segment):
"""
Generate a response emphasizing the bot's capability to provide information related to composting food.
"""
try:
system_message = "You are a chatbot specialized in providing information about food composting tips, tricks, and basics."
user_message = f"Here's the information on composting: {relevant_segment}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": user_message}
]
response = openai.ChatCompletion.create(
model="gpt-4o",
messages=messages,
max_tokens=200,
temperature=0.5,
top_p=1,
frequency_penalty=0.5,
presence_penalty=0.5
)
return response['choices'][0]['message']['content'].strip()
except Exception as e:
print(f"Error in generating response: {e}")
return f"Error in generating response: {e}"
def query_model(question):
"""
Process a question, find relevant information, and generate a response.
"""
if question == "":
return "Welcome to CompBot! Ask me anything about composting tips, tricks, and basics!"
relevant_segment = find_relevant_segment(question, segments)
if not relevant_segment:
return "Could not find specific information. Please refine your question."
response = generate_response(question, relevant_segment)
return response
# Define the welcome message and specific topics the chatbot can provide information about
welcome_message = """
<span style="color:#836953; font-size:24px; font-family:Roboto;">🌱Welcome to CompBot!</span>
""""""
## Your AI-driven assistant for all composting-related queries.
"""
topics = """
### Feel free to ask me anything from the topics below!
- Components of composting
- Green and brown materials
- The composting process
- Common strategies
- Uses of compost
- Tips for successful composting
- Sustainability
"""
# Define the HTML iframe content
podcast_iframe = '''
<div style="height:10px;"></div>
<iframe style="border-radius:12px"
src="https://open.spotify.com/embed/episode/1Emjgqf8PfwD42kvyKvtfW?utm_source=generator&theme=0"
width="100%" height="152" frameBorder="0"
allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" loading="lazy"></iframe>
<div style="height:20px;"></div>
<iframe style="border-radius:12px"
src="https://open.spotify.com/embed/episode/6m83iwiAwCOu5yaW8LOT1v?utm_source=generator&theme=0"
width="100%" height="152" frameBorder="0" allowfullscreen=""
allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture" loading="lazy"></iframe>
'''
youtube_iframe = '''
<iframe width="560" height="315" src="https://www.youtube.com/embed/MryNKPPvFbk" frameborder="0"
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
'''
def display_image():
return "https://huggingface.co/spaces/dogutcu/composting-how-tos/resolve/main/compbot.jpeg"
custom_css = """
<style>
.textbox-question {
background-color: #E8F0FE !important; /* Light blue background */
}
.textbox-answer {
background-color: #F1F8E9 !important; /* Light green background */
}
</style>
"""
theme = gr.themes.Base().set(
background_fill_primary='#AFC9AD', # Light cyan background
background_fill_primary_dark='#AFC9AD', # Dark teal background
background_fill_secondary='#ffccbc', # Light orange background
background_fill_secondary_dark='#d84315', # Dark orange background
border_color_accent='#ffab40', # Accent border color
border_color_accent_dark='#ff6d00', # Dark accent border color
border_color_accent_subdued='#ff8a65', # Subdued accent border color
border_color_primary='#2a2a2a', # Primary border color
block_border_color='#2a2a2a', # Block border color
button_primary_background_fill='#2a2a2a', # Primary button background color
button_primary_background_fill_dark='#2a2a2a' # Dark primary button background color
)
# Setup the Gradio Blocks interface with custom layout components
with gr.Blocks(theme=theme) as demo:
gr.HTML(custom_css)
gr.Image(display_image(), show_label = False, show_share_button = False, show_download_button = False, width=300, height=200)
gr.Markdown(welcome_message) # Display the formatted welcome message
with gr.Row():
with gr.Column():
gr.Markdown(topics) # Show the topics on the left side
gr.HTML(youtube_iframe) # Embed the iframe on the left side
with gr.Row():
with gr.Column():
question = gr.Textbox(label="Your question", placeholder="What would you like to know?")
answer = gr.Textbox(label="CompBot Response", placeholder="CompBot will respond here...", interactive=False, lines=16)
submit_button = gr.Button("Submit")
submit_button.click(fn=query_model, inputs=question, outputs=answer)
# Launch the Gradio app to allow user interaction
demo.launch(share=True)
|