File size: 747 Bytes
2dffec1
c499e4d
2dffec1
d3b769d
 
 
 
 
13054b8
d3b769d
3f1044f
d3b769d
 
 
3d599e6
c499e4d
d3b769d
 
 
 
d29eb8d
d3b769d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
import gradio as gr
from transformers import pipeline

classifier = pipeline(
    "text-classification",
    model="bhadresh-savani/distilbert-base-uncased-emotion",
    return_all_scores=True,
)

EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"]

def predict_emotion(text):
    results = classifier(text)[0]
    return {result["label"]: result["score"] for result in results if result["label"] in EMOTIONS}


iface = gr.Interface(
    fn=predict_emotion,
    inputs=gr.Textbox(lines=3, placeholder="Enter text here..."),
    outputs=gr.Label(num_top_classes=6),
    title="Creative Machines: Sentiment Analysis",
    description="Enter some text and see the predicted emotions.",
)

if __name__ == "__main__":
    iface.launch()