|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
classifier = pipeline( |
|
"text-classification", |
|
model="bhadresh-savani/distilbert-base-uncased-emotion", |
|
return_all_scores=True, |
|
) |
|
|
|
EMOTIONS = ["sadness", "joy", "love", "anger", "fear", "surprise"] |
|
|
|
def predict_emotion(text): |
|
results = classifier(text)[0] |
|
return {result["label"]: result["score"] for result in results if result["label"] in EMOTIONS} |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_emotion, |
|
inputs=gr.Textbox(lines=3, placeholder="Enter text here..."), |
|
outputs=gr.Label(num_top_classes=6), |
|
title="Creative Machines: Sentiment Analysis", |
|
description="Enter some text and see the predicted emotions.", |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
|