File size: 12,190 Bytes
12459eb
1b23081
12459eb
1715696
12459eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1715696
 
12459eb
 
 
 
 
 
 
 
 
1715696
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12459eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c773d7
 
 
 
 
441577a
 
1715696
2c1612c
 
9c773d7
12459eb
 
 
 
 
760e447
 
 
 
 
 
 
 
 
 
 
39de30e
1715696
12459eb
1715696
 
12459eb
1715696
 
 
 
 
 
39de30e
1715696
 
 
 
 
 
 
 
12459eb
 
1715696
 
 
 
 
 
 
 
 
 
12459eb
 
 
 
 
1715696
 
 
 
39de30e
1715696
39de30e
12459eb
 
1715696
 
12459eb
39de30e
12459eb
 
 
39de30e
12459eb
09b69ad
12459eb
09b69ad
 
12459eb
09b69ad
 
12459eb
09b69ad
 
12459eb
09b69ad
 
12459eb
09b69ad
 
12459eb
39de30e
 
 
 
 
 
09b69ad
 
39de30e
 
 
 
 
 
 
 
12459eb
 
 
 
 
 
 
 
 
 
 
 
 
3f3d080
 
 
 
 
 
 
 
 
12459eb
 
 
 
 
d6b7dee
12459eb
3f3d080
 
 
 
 
 
 
 
 
 
d6b7dee
1715696
 
e0787af
12459eb
1715696
 
 
 
 
 
 
 
 
 
 
 
 
12459eb
 
 
d6b7dee
39de30e
12459eb
 
c34d8f1
39de30e
12459eb
 
b86c3d4
12459eb
39de30e
12459eb
39de30e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
import os
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib as mpl
import pycaret
import streamlit as st
from streamlit_option_menu import option_menu
import PIL
from PIL import Image
from PIL import ImageColor
from PIL import ImageDraw
from PIL import ImageFont

hide_streamlit_style = """
            <style>
            #MainMenu {visibility: hidden;}
            footer {visibility: hidden;}
            </style>
            """
st.markdown(hide_streamlit_style, unsafe_allow_html=True)

with st.sidebar:
    image = Image.open('itaca_logo.png')
    st.image(image, width=150) #,use_column_width=True)
    page = option_menu(menu_title='Menu',
                       menu_icon="robot",
                       options=["Clustering Analysis",
                                "Anomaly Detection"],
                       icons=["chat-dots",
                              "key"],
                       default_index=0
                       )

    # Additional section below the option menu
    # st.markdown("---")  # Add a separator line
    st.header("Settings")
    
   # Define the options for the dropdown list
    numclusters = [2, 3, 4, 5, 6]
    # selected_clusters = st.selectbox("Choose a number of clusters", numclusters)
    selected_clusters = st.slider("Choose a number of clusters", min_value=2, max_value=10, value=4)
    
    p_remove_multicollinearity = st.checkbox("Remove Multicollinearity", value=False)
    p_multicollinearity_threshold = st.slider("Choose multicollinearity thresholds", min_value=0.0, max_value=1.0, value=0.9)
    # p_remove_outliers = st.checkbox("Remove Outliers", value=False)
    # p_outliers_method = st.selectbox ("Choose an Outlier Method", ["iforest", "ee", "lof"])
    p_transformation = st.checkbox("Choose Power Transform", value = False)
    p_normalize = st.checkbox("Choose Normalize", value = False)
    p_pca = st.checkbox("Choose PCA", value = False)
    p_pca_method = st.selectbox ("Choose a PCA Method", ["linear", "kernel", "incremental"])

st.title('ITACA Insurance Core AI Module')

if page == "Clustering Analysis":
    st.header('Clustering Analysis')

    st.write(
        """
        """
    )

    # import pycaret unsupervised models
    from pycaret.clustering import *
    # import ClusteringExperiment
    from pycaret.clustering import ClusteringExperiment

    # Display the list of CSV files
    directory = "./"
    all_files = os.listdir(directory)
    # Filter files to only include CSV files
    csv_files = [file for file in all_files if file.endswith(".csv")]
    # Select a CSV file from the list
    selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)

    # Upload the CSV file
    uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
    
    # Define the unsupervised model
    clusteringmodel = ['kmeans', 'ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics', 'birch']
    selected_model = st.selectbox("Choose a clustering model", clusteringmodel)

    # Read and display the CSV file
    if selected_csv != "None" or uploaded_file is not None:
        if uploaded_file:
            try:
                delimiter = ','
                insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
            except ValueError:
                delimiter = '|'
                insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
        else:
            insurance_claims = pd.read_csv(selected_csv)

        st.header("Inference Description")
        insurance_claims.describe().T

        cat_col = insurance_claims.select_dtypes(include=['object']).columns
        num_col = insurance_claims.select_dtypes(exclude=['object']).columns

        # insurance_claims[num_col].hist(bins=15, figsize=(20, 15), layout=(5, 4))
        # Calculate the correlation matrix
        corr_matrix = insurance_claims[num_col].corr()
        # Create a Matplotlib figure
        fig, ax = plt.subplots(figsize=(12, 8))
        # Create a heatmap using seaborn
        st.header("Heat Map")
        sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', fmt='.2f', ax=ax)
        # Set the title for the heatmap
        ax.set_title('Correlation Heatmap')
        # Display the heatmap in Streamlit
        st.pyplot(fig)

        all_columns = insurance_claims.columns.tolist()
        selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)

        if st.button("Prediction"):
            insurance_claims = insurance_claims[selected_columns].copy()
            
            s = setup(insurance_claims, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
                    # remove_outliers=p_remove_outliers, outliers_method=p_outliers_method, 
                    transformation=p_transformation, 
                    normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)
            exp_clustering = ClusteringExperiment()
            # init setup on exp
            exp_clustering.setup(insurance_claims, session_id = 123)

            with st.spinner("Analyzing..."):
                # train kmeans model
                cluster_model = create_model(selected_model, num_clusters = selected_clusters)

                cluster_model_2 = assign_model(cluster_model)
                # Calculate summary statistics for each cluster
                cluster_summary = cluster_model_2.groupby('Cluster').agg(['count', 'mean', 'median', 'min', 'max', 
                                                                             'std', 'var', 'sum', ('quantile_25', lambda x: x.quantile(0.25)), 
                                                                             ('quantile_75', lambda x: x.quantile(0.75)), 'skew'])
                st.header("Cluster Summary")
                cluster_summary
                st.header("Assign Model")
                cluster_model_2

                # all_metrics = get_metrics()
                # all_metrics

                st.header("Clustering Metrics")
                cluster_results = pull()
                cluster_results

                st.header("Clustering Plots")
                # plot pca cluster plot 
                # plot_model(cluster_model, plot = 'cluster', display_format = 'streamlit')
                
                # if selected_model != 'ap':
                #     plot_model(cluster_model, plot = 'tsne', display_format = 'streamlit')
                
                # if selected_model not in ('ap', 'meanshift', 'dbscan', 'optics'):
                #     plot_model(cluster_model, plot = 'elbow', display_format = 'streamlit')
                
                # if selected_model not in ('ap', 'meanshift', 'sc', 'hclust', 'dbscan', 'optics'):
                #     plot_model(cluster_model, plot = 'silhouette', display_format = 'streamlit')
                
                # if selected_model not in ('ap', 'sc', 'hclust', 'dbscan', 'optics', 'birch'):
                #     plot_model(cluster_model, plot = 'distance', display_format = 'streamlit')
                
                # if selected_model != 'ap':
                #     plot_model(cluster_model, plot = 'distribution', display_format = 'streamlit')  

                # Create a Classification Model to extract feature importance
                st.header("Feature Importance")
                from pycaret.classification import *
                s = setup(cluster_model_2, target = 'Cluster')
                lr = create_model('lr')
                # this is how you can recreate the table
                print("Number of columns in X_train:", len(get_config('X_train').columns))
                print("Number of coefficients in lr:", len(lr.coef_[0]))
                feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
                # sort by feature importance value and filter top 10
                feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
                # Display the filtered table in Streamlit
                # st.dataframe(feat_imp)
                # Display the filtered table as a bar chart in Streamlit
                st.bar_chart(feat_imp.set_index('Feature'))

elif page == "Anomaly Detection":
    st.header('Anomaly Detection')

    st.write(
        """
        """
    )

    # import pycaret anomaly
    from pycaret.anomaly import *
    # import AnomalyExperiment
    from pycaret.anomaly import AnomalyExperiment

    # Display the list of CSV files
    directory = "./"
    all_files = os.listdir(directory)
    # Filter files to only include CSV files
    csv_files = [file for file in all_files if file.endswith(".csv")]
    # Select a CSV file from the list
    selected_csv = st.selectbox("Select a CSV file from the list", ["None"] + csv_files)
    
    # Upload the CSV file
    uploaded_file = st.file_uploader("Choose a CSV file", type="csv")

    # Define the unsupervised model
    anomalymodel = ['abod', 'cluster', 'cof', 'iforest', 'histogram', 'knn', 'lof', 'svm', 'pca', 'mcd', 'sod', 'sos']
    selected_model = st.selectbox("Choose an anomaly model", anomalymodel)

    # Read and display the CSV file
    if selected_csv != "None" or uploaded_file is not None:
        if uploaded_file:
            try:
                delimiter = ','
                insurance_claims = pd.read_csv (uploaded_file, sep=delimiter)
            except ValueError:
                delimiter = '|'
                insurance_claims = pd.read_csv (uploaded_file, sep=delimiter, encoding='latin-1')
        else:
            insurance_claims = pd.read_csv(selected_csv)

        all_columns = insurance_claims.columns.tolist()
        selected_columns = st.multiselect("Choose columns", all_columns, default=all_columns)

        if st.button("Prediction"):
            insurance_claims = insurance_claims[selected_columns].copy()
            
            # s = setup(insurance_claims, session_id = 123)

            s = setup(insurance_claims, session_id = 123, remove_multicollinearity=p_remove_multicollinearity, multicollinearity_threshold=p_multicollinearity_threshold,
                        # remove_outliers=p_remove_outliers, outliers_method=p_outliers_method, 
                        transformation=p_transformation, 
                        normalize=p_normalize, pca=p_pca, pca_method=p_pca_method)

            exp_anomaly = AnomalyExperiment()
            # init setup on exp
            exp_anomaly.setup(insurance_claims, session_id = 123)
        
            with st.spinner("Analyzing..."):
                # train model
                anomaly_model = create_model(selected_model)

                st.header("Assign Model")
                anomaly_model_2 = assign_model(anomaly_model)
                anomaly_model_2

                st.header("Anomaly Metrics")
                anomaly_results = pull()
                anomaly_results

                # plot
                st.header("Anomaly Plots")
                plot_model(anomaly_model, plot = 'tsne', display_format = 'streamlit')
                plot_model(anomaly_model, plot = 'umap', display_format = 'streamlit')

                # Create a Classification Model to extract feature importance
                st.header("Feature Importance")
                from pycaret.classification import *
                s = setup(anomaly_model_2, target = 'Anomaly')
                lr = create_model('lr')
                # this is how you can recreate the table
                feat_imp = pd.DataFrame({'Feature': get_config('X_train').columns, 'Value' : abs(lr.coef_[0])}).sort_values(by='Value', ascending=False)
                # sort by feature importance value and filter top 10
                feat_imp = feat_imp.sort_values(by='Value', ascending=False).head(10)
                # Display the filtered table in Streamlit
                # st.dataframe(feat_imp)
                # Display the filtered table as a bar chart in Streamlit
                st.bar_chart(feat_imp.set_index('Feature'))