Spaces:
Running
Running
File size: 5,312 Bytes
0fe2a53 7c10976 0fe2a53 57cd0c4 0fe2a53 ab6c25e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
import os
import cv2
import gradio as gr
from utils import get_upsampler, get_face_enhancer
def inference(img, task, model_name, scale):
if scale > 4:
scale = 4 # avoid too large scale value
try:
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
h, w = img.shape[0:2]
if h > 3500 or w > 3500:
raise gr.Error(f"image too large: {w} * {h}")
if (h < 300 and w < 300) and model_name != "srcnn":
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
if task == "face":
upsample_model_name = "realesr-general-x4v3"
else:
upsample_model_name = model_name
upsampler = get_upsampler(upsample_model_name)
if task == "face":
face_enhancer = get_face_enhancer(model_name, scale, upsampler)
else:
face_enhancer = None
try:
if face_enhancer is not None:
_, _, output = face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True
)
else:
output, _ = upsampler.enhance(img, outscale=scale)
except RuntimeError as error:
raise gr.Error(error)
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
return output
except Exception as error:
raise gr.Error(f"global exception: {error}")
def on_task_change(task):
if task == "general":
return gr.Dropdown.update(
choices=[
"srcnn",
"RealESRGAN_x2plus",
"RealESRGAN_x4plus",
"RealESRNet_x4plus",
"realesr-general-x4v3",
],
value="realesr-general-x4v3",
)
elif task == "face":
return gr.Dropdown.update(
choices=["GFPGANv1.3", "GFPGANv1.4", "RestoreFormer"], value="GFPGANv1.4"
)
elif task == "anime":
return gr.Dropdown.update(
choices=["srcnn", "RealESRGAN_x4plus_anime_6B", "realesr-animevideov3"],
value="RealESRGAN_x4plus_anime_6B",
)
title = "ISR: General Image Super Resolution"
description = r"""Gradio demo for <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration with Generative Facial Prior</b></a>.<br>
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
To use it, simply upload your image.<br>
If GFPGAN is helpful, please help to β the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends π
"""
article = r"""
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
"""
with gr.Blocks(css="style.css", title=title) as demo:
with gr.Row(elem_classes=["container"]):
with gr.Column(scale=2):
input_image = gr.Image(type="filepath", label="Input")
# with gr.Row():
task = gr.Dropdown(
["general", "face", "anime"],
type="value",
value="general",
label="task",
)
model_name = gr.Dropdown(
[
"srcnn",
"RealESRGAN_x2plus",
"RealESRGAN_x4plus",
"RealESRNet_x4plus",
"realesr-general-x4v3",
],
type="value",
value="realesr-general-x4v3",
label="model",
)
scale = gr.Slider(
minimum=1.5,
maximum=4,
value=2,
step=0.5,
label="Scale factor",
info="Scaling factor",
)
run_btn = gr.Button(value="Submit")
with gr.Column(scale=3):
output_image = gr.Image(type="numpy", label="Output image")
with gr.Column(elem_classes=["container"]):
gr.Examples(
[
["examples/landscape.jpg", "general", 2],
["examples/cat.jpg", "general", 2],
["examples/cat2.jpg", "face", 2],
["examples/AI-generate.png", "face", 2],
["examples/Blake_Lively.png", "face", 2],
["examples/old_image.jpg", "face", 2],
["examples/naruto.png", "anime", 2],
["examples/luffy2.jpg", "anime", 2],
],
[input_image, task, scale],
)
gr.HTML(
"""<br><br><br><center>You can duplicate this Space to skip the queue:<a href="https://huggingface.co/spaces/dragonSwing/isr?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a><br>
<p><img src="https://visitor-badge.glitch.me/badge?page_id=dragonswing.isr" alt="visitors"></p></center>"""
)
run_btn.click(inference, [input_image, task, model_name, scale], [output_image])
task.change(on_task_change, [task], [model_name])
demo.queue(concurrency_count=4).launch()
|