File size: 5,700 Bytes
0fe2a53
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import os
import torch
from basicsr.utils.download_util import load_file_from_url
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from gfpgan.utils import GFPGANer
from realesrgan.utils import RealESRGANer

from config import *
from srcnn import SRCNN


def get_upsampler(model_name, device=None):
    if model_name == "RealESRGAN_x4plus":  # x4 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth"
        ]
    elif model_name == "RealESRNet_x4plus":  # x4 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=4,
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth"
        ]
    elif model_name == "RealESRGAN_x4plus_anime_6B":  # x4 RRDBNet model with 6 blocks
        model = RRDBNet(
            num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth"
        ]
    elif model_name == "RealESRGAN_x2plus":  # x2 RRDBNet model
        model = RRDBNet(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_block=23,
            num_grow_ch=32,
            scale=2,
        )
        netscale = 2
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth"
        ]
    elif model_name == "realesr-animevideov3":  # x4 VGG-style model (XS size)
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=16,
            upscale=4,
            act_type="prelu",
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth"
        ]
    elif model_name == "realesr-general-x4v3":  # x4 VGG-style model (S size)
        model = SRVGGNetCompact(
            num_in_ch=3,
            num_out_ch=3,
            num_feat=64,
            num_conv=32,
            upscale=4,
            act_type="prelu",
        )
        netscale = 4
        file_url = [
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-wdn-x4v3.pth",
            "https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
        ]
    elif model_name == "srcnn":
        model = SRCNN(device=device)
        model_path = os.path.join(ROOT_DIR, WEIGHT_DIR, model_name + ".pth")
        model.load_state_dict(torch.load(model_path, map_location=torch.device("cpu")))
        if device:
            model.to(device)
        return model
    else:
        raise ValueError(f"Wrong model version {model_name}.")

    model_path = os.path.join(ROOT_DIR, WEIGHT_DIR, model_name + ".pth")
    if not os.path.exists(model_path):
        print(f"Downloading weights for model {model_name}")

        for url in file_url:
            # model_path will be updated
            model_path = load_file_from_url(
                url=url,
                model_dir=os.path.join(ROOT_DIR, WEIGHT_DIR),
                progress=True,
                file_name=None,
            )

    if model_name != "realesr-general-x4v3":
        dni_weight = None
    else:
        dni_weight = [0.5, 0.5]
        wdn_model_path = model_path.replace(
            "realesr-general-x4v3", "realesr-general-wdn-x4v3"
        )
        model_path = [model_path, wdn_model_path]

    half = "cuda" in str(device)

    return RealESRGANer(
        scale=netscale,
        model_path=model_path,
        dni_weight=dni_weight,
        model=model,
        half=half,
        device=device,
    )


def get_face_enhancer(model_name, upscale=2, bg_upsampler=None, device=None):
    if model_name == "GFPGANv1.3":
        arch = "clean"
        channel_multiplier = 2
        file_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth"
    elif model_name == "GFPGANv1.4":
        arch = "clean"
        channel_multiplier = 2
        file_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
    elif model_name == "RestoreFormer":
        arch = "RestoreFormer"
        channel_multiplier = 2
        file_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth"
    else:
        raise ValueError(f"Wrong model version {model_name}.")

    model_path = os.path.join(ROOT_DIR, WEIGHT_DIR, model_name + ".pth")
    if not os.path.exists(model_path):
        print(f"Downloading weights for model {model_name}")
        model_path = load_file_from_url(
            url=file_url,
            model_dir=os.path.join(ROOT_DIR, WEIGHT_DIR),
            progress=True,
            file_name=None,
        )

    return GFPGANer(
        model_path=model_path,
        upscale=upscale,
        arch=arch,
        channel_multiplier=channel_multiplier,
        bg_upsampler=bg_upsampler,
        device=device,
    )