File size: 4,976 Bytes
4161807
60e3b0a
 
4161807
 
 
 
 
 
e72642d
4161807
60e3b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4161807
60e3b0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e72642d
60e3b0a
 
 
 
 
 
e72642d
60e3b0a
 
 
 
4161807
60e3b0a
 
 
 
 
 
 
 
 
e72642d
60e3b0a
 
 
 
 
 
 
e72642d
5505694
60e3b0a
994c940
 
 
 
 
 
 
 
 
 
 
60e3b0a
 
 
 
 
 
 
994c940
 
5505694
 
60e3b0a
 
 
 
 
 
 
e72642d
60e3b0a
4161807
 
 
e72642d
 
 
 
 
 
 
60e3b0a
 
 
 
 
 
 
e72642d
a59370d
4161807
 
 
 
a59370d
4161807
 
 
 
 
60e3b0a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gradio as gr
import torch
import transformers

# https://github.com/huggingface/peft
# Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs)
# to various downstream applications without fine-tuning all the model's parameters.
from peft import PeftModel

from scrape_website import process_webpage

assert (
    "LlamaTokenizer" in transformers._import_structure["models.llama"]
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig

tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")

BASE_MODEL = "decapoda-research/llama-7b-hf"
LORA_WEIGHTS = "tloen/alpaca-lora-7b"

if torch.cuda.is_available():
    device = "cuda"
else:
    device = "cpu"

try:
    # mps device enables high-performance training on GPU for MacOS devices with Metal programming framework.
    if torch.backends.mps.is_available():
        device = "mps"
except:
    pass

if device == "cuda":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        load_in_8bit=False,
        torch_dtype=torch.float16,
        device_map="auto",
    )
    model = PeftModel.from_pretrained(
        model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
    )
elif device == "mps":
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
        torch_dtype=torch.float16,
    )
else:
    model = LlamaForCausalLM.from_pretrained(
        BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
    )
    model = PeftModel.from_pretrained(
        model,
        LORA_WEIGHTS,
        device_map={"": device},
    )


def generate_prompt(instruction, input=None):
    if input:
        return f"""Below is an url that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:"""
    else:
        return f"""Below is an url that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:"""


if device != "cpu":
    model.half()
model.eval()
if torch.__version__ >= "2":
    model = torch.compile(model)


def evaluate(
    instruction,
    url,
    temperature=0.1,
    top_p=0.75,
    top_k=40,
    num_beams=4,
    max_new_tokens=128,
    **kwargs,
):
    content = process_webpage(url=url)
    # avoid GPU memory overflow
    with torch.no_grad():
        torch.cuda.empty_cache()
        prompt = generate_prompt(instruction, content)
        inputs = tokenizer(prompt, return_tensors="pt")
        input_ids = inputs["input_ids"].to(device)
        generation_config = GenerationConfig(
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            num_beams=num_beams,
            **kwargs,
        )
        generation_output = model.generate(
            input_ids=input_ids,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
        )
        s = generation_output.sequences[0]
        output = tokenizer.decode(s)
    # avoid GPU memory overflow
    torch.cuda.empty_cache()
    return output.split("### Response:")[1].strip()


g = gr.Interface(
    fn=evaluate,
    inputs=[
        gr.components.Textbox(
            lines=2, label="FAQ", placeholder="Ask me anything about this website?"
        ),
        gr.components.Textbox(
            lines=1, label="Website URL", placeholder="https://www.meet-drift.ai/"
        ),
        # gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
        # gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
        # gr.components.Slider(minimum=0, maximum=100, step=1, value=40, label="Top k"),
        # gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
        # gr.components.Slider(
        #     minimum=1, maximum=512, step=1, value=128, label="Max tokens"
        # ),
    ],
    outputs=[
        gr.inputs.Textbox(
            lines=5,
            label="Output",
        )
    ],
    title="FAQ A Website",
    examples=[
        [
            "Can you list the capabilities this company has in bullet points?",
            "https://www.meet-drift.ai/",
        ],
        ["What's the name of the founder?", "https://www.meet-drift.ai/about"],
        [
            "in 1 word what's the service the company is providing?",
            "https://www.meet-drift.ai/",
        ],
    ],
)
g.queue(concurrency_count=1)
g.launch()