Spaces:
Runtime error
Runtime error
File size: 5,265 Bytes
06cf97c e481d34 06cf97c e481d34 5f111f9 e481d34 5f111f9 06cf97c e481d34 06cf97c 5f111f9 e481d34 06cf97c e481d34 06cf97c 5f111f9 e481d34 5f111f9 e481d34 06cf97c e481d34 06cf97c e481d34 5f111f9 e481d34 06cf97c 5f111f9 e481d34 06cf97c e481d34 5f111f9 06cf97c e481d34 5f111f9 e481d34 5f111f9 06cf97c e481d34 5f111f9 e481d34 5f111f9 e481d34 5f111f9 e481d34 5f111f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import boto3
import os
import json
import pandas as pd
from urllib.parse import urlparse
import random
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.chains import LLMChain, SequentialChain
llm = ChatOpenAI(temperature=0.0, openai_api_key=os.environ["OPENAI"])
def generate_skills() -> list:
template_generate_skills = """
Can you generate me a list of skills you would need to be successfully employed in a Data Scientist role?
Return 10 skills as a JSON list.
"""
prompt_generate_skills = ChatPromptTemplate.from_template(
template=template_generate_skills
)
role_skills = LLMChain(
llm=llm, prompt=prompt_generate_skills, output_key="role_skills"
)
generate_skills_chain = SequentialChain(
chains=[role_skills],
input_variables=[],
output_variables=["role_skills"],
verbose=False,
)
result = generate_skills_chain({})
result_array = json.loads(result["role_skills"])["skills"]
return result_array
def generate_resume(skills: list) -> str:
template_generate_resume = """
Given the following list of skills as an array delimited by three backticks, generate a resume of a data scientist with 3 years of experience.
Make sure to include a section "skills" in the resume.
```
{skills}
```
"""
prompt_generate_resume = ChatPromptTemplate.from_template(
template=template_generate_resume
)
resume = LLMChain(llm=llm, prompt=prompt_generate_resume, output_key="resume")
generate_resume_chain = SequentialChain(
chains=[resume],
input_variables=["skills"],
output_variables=["resume"],
verbose=False,
)
result = generate_resume_chain({"skills": skills})
return result
def retrieve_skills(resume: str) -> str:
template_retrieve_skills = """
Given the following resume delimited by three backticks, retrieve the skills this data scientist possesses.
Return them as a JSON list.
```
{resume}
```
"""
prompt_retrieve_skills = ChatPromptTemplate.from_template(
template=template_retrieve_skills
)
skills = LLMChain(llm=llm, prompt=prompt_retrieve_skills, output_key="skills")
retrieve_skills_chain = SequentialChain(
chains=[skills],
input_variables=["resume"],
output_variables=["skills"],
verbose=False,
)
result = retrieve_skills_chain({"resume": resume})
result_array = json.loads(result["skills"])
return result_array
def get_score(true_values: list, predicted_values: list) -> float:
intersection_list = [value for value in predicted_values if value in true_values]
print(intersection_list)
return len(intersection_list) / len(true_values)
if __name__ == "__main__":
role_skills = generate_skills()
random_skills = random.sample(role_skills, 3)
resume = generate_resume(random_skills)
skills = retrieve_skills(resume)
score = get_score(random_skills, skills)
print(random_skills)
print(skills)
print(score)
# def get_resumes() -> str:
# s3 = boto3.client(
# 's3',
# region_name='eu-west-1'
# )
# resumes = s3.get_object(Bucket='ausy-datalake-drift-nonprod', Key='resume-matcher/raw/resume-dataset.csv')
# resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
# resumes_list = resumes['Body'].read().decode('utf-8').splitlines()
# resumes_list = str(resumes_list).replace('. ', '.\n')
# resumes_list = str(resumes_list).replace('â¢', '\n - ')
# resumes_list = [s.replace('. ', '.\n') for s in resumes_list]
# resumes_list = [s.replace('â¢', '\n - ') for s in resumes_list]
# resume_string =''.join(resumes_list)
# s3_uri = urlparse("s3://ausy-datalake-drift-nonprod/resume-matcher/raw/resume-dataset.csv", allow_fragments=False).geturl()
# resumes_list = pd.read_csv(s3_uri, header=None, encoding='utf-8')[0].tolist()
# return resumes_list
# def get_skills(resumes: str) -> list:
# template_resumes_get_skills = """
# Given the following string, delimited by <RESUMES> and </RESUMES> which contains resumes which are not properly formatted, categorize the resumes based on domain.
# For each domain list the skills of the resumes that are part of that domain.
# Create a JSON object where they keys are the domains and the values are a list containing the skills.
# Return that JSON object only.
# <RESUMES>
# {resumes}
# </RESUMES>
# """
# prompt_vacancy_get_skills = ChatPromptTemplate.from_template(template=template_resumes_get_skills)
# resume_skills = LLMChain(llm=llm, prompt=prompt_vacancy_get_skills, output_key="resume_skills")
# get_skills_resumes_chain = SequentialChain(
# chains=[resume_skills],
# input_variables=["resumes"],
# output_variables=["resume_skills"],
# verbose=False
# )
# result = get_skills_resumes_chain({"resumes": resumes})
# # print(result)
# resume_skills = json.loads(result['resume_skills'])
# print(resume_skills)
# if __name__ == "__main__":
# resumes = get_resumes()
# print(resumes)
# for x in resumes:
# get_skills(x)
|