|
import streamlit as st |
|
import tensorflow as tf |
|
from PIL import Image |
|
import os |
|
|
|
model = tf.keras.models.load_model('Brain_tumor/') |
|
st.write('Model is loaded successfully') |
|
|
|
TEMP_DIR = 'temp' |
|
if not os.path.exists(TEMP_DIR): |
|
os.makedirs(TEMP_DIR) |
|
|
|
class_names = ['glioma', 'meningioma', 'notumor', 'pituitary'] |
|
|
|
def load_and_prep_imgg(filename ,img_shape=229, scale=True): |
|
|
|
img = tf.io.read_file(filename) |
|
|
|
img = tf.io.decode_image(img) |
|
|
|
img = tf.image.resize(img,size=[img_shape,img_shape]) |
|
|
|
if scale : |
|
return img/255 |
|
else : |
|
return img |
|
|
|
st.title('Brain Tumor Classidfication Predition using Xception ImageNet ') |
|
|
|
uploaded_file = st.sidebar.file_uploader('Upload your Image', type=['jpg']) |
|
|
|
if uploaded_file: |
|
|
|
|
|
img = load_and_prep_imgg(uploaded_file.name,scale=True) |
|
imgg = Image.open(uploaded_file.name) |
|
st.image(img,caption ="Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}" ) |
|
|
|
pred_img = model.predict(tf.expand_dims(img,axis=0)) |
|
pred_class = class_names[pred_img.argmax()] |
|
st.write(f"Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}") |
|
|
|
|