Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import os
|
5 |
+
|
6 |
+
model = tf.keras.models.load_model('Brain_tumor/')
|
7 |
+
st.write('Model is loaded successfully')
|
8 |
+
|
9 |
+
TEMP_DIR = 'temp'
|
10 |
+
if not os.path.exists(TEMP_DIR):
|
11 |
+
os.makedirs(TEMP_DIR)
|
12 |
+
|
13 |
+
class_names = ['glioma', 'meningioma', 'notumor', 'pituitary']
|
14 |
+
|
15 |
+
def load_and_prep_imgg(filename ,img_shape=229, scale=True):
|
16 |
+
|
17 |
+
img = tf.io.read_file(filename)
|
18 |
+
|
19 |
+
img = tf.io.decode_image(img)
|
20 |
+
|
21 |
+
img = tf.image.resize(img,size=[img_shape,img_shape])
|
22 |
+
|
23 |
+
if scale :
|
24 |
+
return img/255
|
25 |
+
else :
|
26 |
+
return img
|
27 |
+
|
28 |
+
st.title('Brain Tumor Classidfication Predition using Xception ImageNet ')
|
29 |
+
|
30 |
+
uploaded_file = st.sidebar.file_uploader('Upload your Image', type=['jpg'])
|
31 |
+
|
32 |
+
if uploaded_file:
|
33 |
+
|
34 |
+
#file_path = os.path.join(uploaded_file.name)
|
35 |
+
img = load_and_prep_imgg(uploaded_file.name,scale=True)
|
36 |
+
imgg = Image.open(uploaded_file.name)
|
37 |
+
st.image(img,caption ="Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}" )
|
38 |
+
|
39 |
+
pred_img = model.predict(tf.expand_dims(img,axis=0))
|
40 |
+
pred_class = class_names[pred_img.argmax()]
|
41 |
+
st.write(f"Predicted brain tumor is : {pred_class} with probs : {pred_img:max():.2f}")
|
42 |
+
|