File size: 4,071 Bytes
693c6e9
 
 
 
 
 
 
23624f5
 
 
bc1d2e1
 
 
849fdd5
bc1d2e1
 
849fdd5
31ee503
bc1d2e1
 
849fdd5
23624f5
bc1d2e1
b790aae
bc1d2e1
 
b790aae
 
bc1d2e1
 
 
 
 
 
 
 
 
 
 
 
23624f5
ca3be5f
849fdd5
bc1d2e1
 
 
849fdd5
 
bc1d2e1
 
 
 
 
 
 
 
23624f5
bc1d2e1
 
 
 
 
849fdd5
23624f5
8666754
7b94d99
 
693c6e9
 
bc1d2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23624f5
 
 
bc1d2e1
 
23624f5
 
 
 
bc1d2e1
 
 
 
 
23624f5
 
bc1d2e1
849fdd5
8666754
bc1d2e1
23624f5
bc1d2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""
Diabetes Version
@aim: Demo for testing purposes only
@inquiries: Dr M As'ad 
@email: [email protected]
"""

import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()


# initialize the client
client = OpenAI(
    base_url="https://p7fw46eiw6xfkxvj.us-east-1.aws.endpoints.huggingface.cloud/v1/",
    # "hf_xxx" # Replace with your token
    api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')
)

# Create supported models
model_links = {
    "HAH v0.1": "drmasad/HAH-2024-v0.11",
    "Mistral": "mistralai/Mistral-7B-Instruct-v0.2",
}

# Pull info about the model to display
model_info = {
    "HAH v0.1":
        {'description': """HAH 0.1 is a fine tuned model based on Mistral 7b instruct.\n \
            \nIt was created by Dr M. As'ad using 250k dB rows sourced from open source articles on diabetes** \n""",
         'logo': 'https://www.hmgaihub.com/untitled.png'},
    "Mistral":
        {'description': """The Mistral model is a **Large Language Model (LLM)** that's able to have question and answer interactions.\n \
            \nIt was created by the [**Mistral AI**](https://mistral.ai/news/announcing-mistral-7b/) team as has over  **7 billion parameters.** \n""",
         'logo': 'https://mistral.ai/images/logo_hubc88c4ece131b91c7cb753f40e9e1cc5_2589_256x0_resize_q97_h2_lanczos_3.webp'},

}


def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None


# Define the available models
models = [key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))


# Create model description
st.sidebar.button("Reset Chat", on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("*This is an under development project.*")
st.sidebar.markdown("*Not a replacement for medical advice from a doctor.*")


if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()


# Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'AI - {selected_model}')
# st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model]

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


# Accept user input
if prompt := st.chat_input(f"Hi I'm {selected_model}, ask me a question"):

    # Display user message in chat message container
    with st.chat_message("user"):
        st.markdown(prompt)
    # Add user message to chat history
    st.session_state.messages.append({"role": "user", "content": prompt})

    # Display assistant response in chat message container
    with st.chat_message("assistant"):
        stream = client.chat.completions.create(
            model=model_links[selected_model],
            messages=[
                {"role": m["role"], "content": m["content"]}
                for m in st.session_state.messages
            ],
            temperature=temp_values,  # 0.5,
            stream=True,
            max_tokens=3000,
        )

        response = st.write_stream(stream)
    st.session_state.messages.append(
        {"role": "assistant", "content": response})