File size: 6,233 Bytes
693c6e9
 
 
 
 
 
 
23624f5
 
 
bc1d2e1
 
 
849fdd5
bc1d2e1
 
849fdd5
31ee503
bc1d2e1
849fdd5
23624f5
bc1d2e1
b790aae
bc1d2e1
b790aae
 
bc1d2e1
 
 
 
 
 
 
23624f5
ca3be5f
849fdd5
bc1d2e1
 
 
849fdd5
 
bc1d2e1
 
 
 
 
 
 
 
23624f5
bc1d2e1
 
 
 
 
849fdd5
23624f5
8666754
7b94d99
 
693c6e9
 
bc1d2e1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23624f5
 
 
bc1d2e1
 
23624f5
 
 
 
bc1d2e1
8bfe0fe
 
 
 
dfd3f33
8bfe0fe
dfd3f33
8bfe0fe
dfd3f33
8bfe0fe
dfd3f33
8bfe0fe
 
 
 
dfd3f33
8bfe0fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfd3f33
8bfe0fe
dfd3f33
8bfe0fe
 
 
dfd3f33
 
8bfe0fe
5f10c1e
dfd3f33
8bfe0fe
 
dfd3f33
 
 
 
8bfe0fe
 
 
dfd3f33
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
"""
Diabetes Version
@aim: Demo for testing purposes only
@inquiries: Dr M As'ad 
@email: drmohasad@gmail.com
"""

import streamlit as st
from openai import OpenAI
import os
import sys
from dotenv import load_dotenv, dotenv_values
load_dotenv()


# initialize the client
client = OpenAI(
    base_url="https://p7fw46eiw6xfkxvj.us-east-1.aws.endpoints.huggingface.cloud/v1/",
    api_key=os.environ.get('HUGGINGFACEHUB_API_TOKEN')
)

# Create supported models
model_links = {
    "HAH v0.1": "drmasad/HAH-2024-v0.11",
}

# Pull info about the model to display
model_info = {
    "HAH v0.1":
        {'description': """HAH 0.1 is a fine tuned model based on Mistral 7b instruct.\n \
            \nIt was created by Dr M. As'ad using 250k dB rows sourced from open source articles on diabetes** \n""",
         'logo': 'https://www.hmgaihub.com/untitled.png'},
}


def reset_conversation():
    '''
    Resets Conversation
    '''
    st.session_state.conversation = []
    st.session_state.messages = []
    return None


# Define the available models
models = [key for key in model_links.keys()]

# Create the sidebar with the dropdown for model selection
selected_model = st.sidebar.selectbox("Select Model", models)

# Create a temperature slider
temp_values = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5))


# Create model description
st.sidebar.button("Reset Chat", on_click=reset_conversation)
st.sidebar.write(f"You're now chatting with **{selected_model}**")
st.sidebar.image("https://www.hmgaihub.com/untitled.png")
st.sidebar.markdown("*Generated content may be inaccurate or false.*")
st.sidebar.markdown("*This is an under development project.*")
st.sidebar.markdown("*Not a replacement for medical advice from a doctor.*")


if "prev_option" not in st.session_state:
    st.session_state.prev_option = selected_model

if st.session_state.prev_option != selected_model:
    st.session_state.messages = []
    # st.write(f"Changed to {selected_model}")
    st.session_state.prev_option = selected_model
    reset_conversation()


# Pull in the model we want to use
repo_id = model_links[selected_model]


st.subheader(f'AI - {selected_model}')
# st.title(f'ChatBot Using {selected_model}')

# Set a default model
if selected_model not in st.session_state:
    st.session_state[selected_model] = model_links[selected_model]

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []


# Display chat messages from history on app rerun
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])


# Initialize the streaming status flag
if "is_streaming" not in st.session_state:
    st.session_state.is_streaming = False

# Chat input handling
if st.session_state.is_streaming:
    st.chat_input("The assistant is currently responding. Please wait...")  # Inform the user to wait
else:
    # If not streaming, allow user input
    if prompt := st.chat_input("Ask me anything about diabetes"):
        st.session_state.is_streaming = True  # Set the flag to indicate streaming has started

        with st.chat_message("user"):
            st.markdown(prompt)

        # Add the user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})

        instructions = """
    Act as a highly knowledgeable endocrinology doctor with expertise in explaining complex medical information in an understandable way to patients who do not have a medical background. Your responses should not only convey empathy and care but also demonstrate a high level of medical accuracy and reliability.
    When crafting your explanations, please adhere to the following guidelines:
      - Prioritize medical accuracy: Ensure all information provided is up-to-date and reflects current medical consensus. Use evidence-based medical knowledge to inform your responses.
      - Clarify complex concepts: Break down medical terms and concepts into understandable language. Use analogies related to everyday experiences to help explain complex ideas when possible.
      - Provide actionable advice: Where appropriate, offer practical and specific advice that the patient can follow to address their concerns or manage their condition, including when to consult a healthcare professional.
      - Address concerns directly: Understand and directly respond to the patient's underlying concerns or questions, offering clear explanations and reassurance about their condition or treatment options.
      - Promote informed decision-making: Empower the patient with the knowledge they need to make informed health decisions. Highlight key considerations and options available to them in managing their health.
    Your response should be a blend of professional medical advice and compassionate communication, creating a dialogue that educates, reassures, and empowers the patient.
    Strive to make your response as informative and authoritative as a consultation with a human doctor, ensuring the patient feels supported and knowledgeable about their health concerns.
    You will answer as if you are talking to a patient directly
    """

        full_prompt = f"<s>[INST] {prompt} [/INST] {instructions}</s>"

        # Display assistant response in chat message container
        with st.chat_message("assistant"):
            # Stream the response
            stream = client.chat.completions.create(
                model=model_links[selected_model],
                messages=[
                    {"role": m["role"], "content": full_prompt}
                    for m in st.session_state.messages
                ],
                temperature=temp_values,
                stream=True,
                max_tokens=1024,
            )
            response = st.write_stream(stream)

            # Process and clean the response
            response = response.replace('</s>', '').strip()  # Clean unnecessary characters

            st.markdown(response)

            # Indicate that streaming is complete
            st.session_state.is_streaming = False

        # Store the final response
        st.session_state.messages.append({"role": "assistant", "content": response})