sculpt / app.py
ds1david's picture
fixing bugs
d160dc6
raw
history blame
4.78 kB
import logging
import pickle
import warnings
import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline
from huggingface_hub import hf_hub_download
from transformers import DPTImageProcessor, DPTForDepthEstimation
from model import build_thera
from utils import make_grid
# Configuração de logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("processing.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
# Configurações
warnings.filterwarnings("ignore")
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"
def load_thera_model(repo_id, filename):
try:
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
with open(model_path, 'rb') as fh:
check = pickle.load(fh)
variables = check['model']
backbone, size = check['backbone'], check['size']
return build_thera(3, backbone, size), variables
except Exception as e:
logger.error(f"Erro ao carregar Thera: {str(e)}")
raise
logger.info("Carregando modelos...")
model_edsr, variables_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float32
).to(TORCH_DEVICE)
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)
def adjust_size(size):
return max(8, (size // 8) * 8)
def full_pipeline(image, prompt, scale_factor=2.0, progress=gr.Progress()):
try:
progress(0.1, desc="Iniciando...")
image = image.convert("RGB")
source = np.array(image) / 255.0
# Ajuste de dimensões
target_shape = (
adjust_size(int(image.height * scale_factor)),
adjust_size(int(image.width * scale_factor))
)
logger.info(f"Transformação: {image.size}{target_shape}")
# Gerar grid
coords = make_grid(target_shape)
logger.debug(f"Coords shape: {coords.shape}")
# Super-resolução
progress(0.3, desc="Processando super-resolução...")
source_jax = jax.device_put(source[np.newaxis, ...], JAX_DEVICE)
t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)
upscaled = model_edsr.apply(
variables_edsr,
source_jax,
t,
target_shape
)
upscaled_pil = Image.fromarray((np.array(upscaled[0]) * 255).astype(np.uint8))
# Bas-Relief
progress(0.6, desc="Gerando relevo...")
bas_relief = pipe(
prompt=f"BAS-RELIEF {prompt}, ultra detailed engraving, 16K resolution",
image=upscaled_pil,
strength=0.7,
num_inference_steps=25
).images[0]
# Depth Map
progress(0.8, desc="Calculando profundidade...")
inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
with torch.no_grad():
depth = depth_model(**inputs).predicted_depth
depth_map = torch.nn.functional.interpolate(
depth.unsqueeze(1),
size=bas_relief.size[::-1],
mode="bicubic"
).squeeze().cpu().numpy()
depth_normalized = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
depth_pil = Image.fromarray((depth_normalized * 255).astype(np.uint8))
return upscaled_pil, bas_relief, depth_pil
except Exception as e:
logger.error(f"ERRO: {str(e)}", exc_info=True)
raise gr.Error(f"Erro no processamento: {str(e)}")
# Interface
with gr.Blocks(title="SuperRes + BasRelief") as app:
gr.Markdown("## 🖼️ Super Resolução + 🗿 Bas-Relief + 🗺️ Mapa de Profundidade")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="Entrada")
prompt = gr.Textbox("Escultura detalhada em mármore, alto relevo", label="Descrição")
scale = gr.Slider(1.0, 4.0, value=2.0, label="Escala")
btn = gr.Button("Processar ▶️")
with gr.Column():
img_upscaled = gr.Image(label="Super Resolução")
img_basrelief = gr.Image(label="Bas-Relief")
img_depth = gr.Image(label="Profundidade")
btn.click(full_pipeline, [img_input, prompt, scale], [img_upscaled, img_basrelief, img_depth])
if __name__ == "__main__":
app.launch()