File size: 4,779 Bytes
d160dc6
 
 
 
98889c8
1eb87a5
a7111d1
98889c8
d160dc6
1665fe1
1eb87a5
d160dc6
a7111d1
d160dc6
a7111d1
d160dc6
a7111d1
46bb495
 
 
 
 
 
 
 
 
 
 
d160dc6
 
3920f5c
 
1eb87a5
 
3920f5c
46bb495
 
 
 
 
 
d160dc6
46bb495
d160dc6
46bb495
3920f5c
 
d160dc6
a02c6d7
d160dc6
 
 
 
 
 
 
1eb87a5
 
d85fde4
d160dc6
d85fde4
 
46bb495
3920f5c
d160dc6
a7111d1
 
3920f5c
d160dc6
d85fde4
 
 
 
d160dc6
 
 
 
 
d85fde4
d160dc6
 
 
a7111d1
3920f5c
 
46bb495
3920f5c
a7111d1
0652978
3920f5c
d160dc6
0652978
d160dc6
 
3920f5c
d160dc6
3920f5c
 
d85fde4
3920f5c
 
d160dc6
d85fde4
3920f5c
 
d160dc6
3920f5c
 
 
 
 
 
 
d85fde4
a7111d1
 
 
3920f5c
 
d160dc6
 
3920f5c
 
d160dc6
d85fde4
d160dc6
1665fe1
 
d160dc6
 
 
 
1665fe1
d160dc6
d85fde4
 
d160dc6
98889c8
 
d160dc6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import logging
import pickle
import warnings

import gradio as gr
import jax
import jax.numpy as jnp
import numpy as np
import torch
from PIL import Image
from diffusers import StableDiffusionXLImg2ImgPipeline
from huggingface_hub import hf_hub_download
from transformers import DPTImageProcessor, DPTForDepthEstimation

from model import build_thera
from utils import make_grid

# Configuração de logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s',
    handlers=[
        logging.FileHandler("processing.log"),
        logging.StreamHandler()
    ]
)
logger = logging.getLogger(__name__)

# Configurações
warnings.filterwarnings("ignore")
JAX_DEVICE = jax.devices("cpu")[0]
TORCH_DEVICE = "cpu"


def load_thera_model(repo_id, filename):
    try:
        model_path = hf_hub_download(repo_id=repo_id, filename=filename)
        with open(model_path, 'rb') as fh:
            check = pickle.load(fh)
            variables = check['model']
            backbone, size = check['backbone'], check['size']
        return build_thera(3, backbone, size), variables
    except Exception as e:
        logger.error(f"Erro ao carregar Thera: {str(e)}")
        raise


logger.info("Carregando modelos...")
model_edsr, variables_edsr = load_thera_model("prs-eth/thera-edsr-pro", "model.pkl")
pipe = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    torch_dtype=torch.float32
).to(TORCH_DEVICE)
pipe.load_lora_weights("KappaNeuro/bas-relief", weight_name="BAS-RELIEF.safetensors")
feature_extractor = DPTImageProcessor.from_pretrained("Intel/dpt-large")
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large").to(TORCH_DEVICE)


def adjust_size(size):
    return max(8, (size // 8) * 8)


def full_pipeline(image, prompt, scale_factor=2.0, progress=gr.Progress()):
    try:
        progress(0.1, desc="Iniciando...")
        image = image.convert("RGB")
        source = np.array(image) / 255.0

        # Ajuste de dimensões
        target_shape = (
            adjust_size(int(image.height * scale_factor)),
            adjust_size(int(image.width * scale_factor))
        )
        logger.info(f"Transformação: {image.size}{target_shape}")

        # Gerar grid
        coords = make_grid(target_shape)
        logger.debug(f"Coords shape: {coords.shape}")

        # Super-resolução
        progress(0.3, desc="Processando super-resolução...")
        source_jax = jax.device_put(source[np.newaxis, ...], JAX_DEVICE)
        t = jnp.array([1.0 / (scale_factor ** 2)], dtype=jnp.float32)

        upscaled = model_edsr.apply(
            variables_edsr,
            source_jax,
            t,
            target_shape
        )
        upscaled_pil = Image.fromarray((np.array(upscaled[0]) * 255).astype(np.uint8))

        # Bas-Relief
        progress(0.6, desc="Gerando relevo...")
        bas_relief = pipe(
            prompt=f"BAS-RELIEF {prompt}, ultra detailed engraving, 16K resolution",
            image=upscaled_pil,
            strength=0.7,
            num_inference_steps=25
        ).images[0]

        # Depth Map
        progress(0.8, desc="Calculando profundidade...")
        inputs = feature_extractor(bas_relief, return_tensors="pt").to(TORCH_DEVICE)
        with torch.no_grad():
            depth = depth_model(**inputs).predicted_depth

        depth_map = torch.nn.functional.interpolate(
            depth.unsqueeze(1),
            size=bas_relief.size[::-1],
            mode="bicubic"
        ).squeeze().cpu().numpy()

        depth_normalized = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min())
        depth_pil = Image.fromarray((depth_normalized * 255).astype(np.uint8))

        return upscaled_pil, bas_relief, depth_pil

    except Exception as e:
        logger.error(f"ERRO: {str(e)}", exc_info=True)
        raise gr.Error(f"Erro no processamento: {str(e)}")


# Interface
with gr.Blocks(title="SuperRes + BasRelief") as app:
    gr.Markdown("## 🖼️ Super Resolução + 🗿 Bas-Relief + 🗺️ Mapa de Profundidade")
    with gr.Row():
        with gr.Column():
            img_input = gr.Image(type="pil", label="Entrada")
            prompt = gr.Textbox("Escultura detalhada em mármore, alto relevo", label="Descrição")
            scale = gr.Slider(1.0, 4.0, value=2.0, label="Escala")
            btn = gr.Button("Processar ▶️")
        with gr.Column():
            img_upscaled = gr.Image(label="Super Resolução")
            img_basrelief = gr.Image(label="Bas-Relief")
            img_depth = gr.Image(label="Profundidade")
    btn.click(full_pipeline, [img_input, prompt, scale], [img_upscaled, img_basrelief, img_depth])

if __name__ == "__main__":
    app.launch()