Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,60 @@
|
|
1 |
import gradio as gr
|
2 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
|
|
|
|
|
|
3 |
|
4 |
-
# Load
|
5 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
6 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def generate_caption(image):
|
9 |
-
# Process the image
|
10 |
inputs = processor(images=image, return_tensors="pt")
|
11 |
-
|
12 |
-
# Generate caption using BLIP model
|
13 |
out = model.generate(**inputs)
|
14 |
-
|
15 |
-
# Decode the output into a string
|
16 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
17 |
-
|
18 |
-
#
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
iface = gr.Interface(fn=generate_caption,
|
28 |
inputs=gr.Image(type="pil"),
|
29 |
outputs=gr.Textbox(),
|
30 |
-
title="Image Caption Generator",
|
31 |
-
description="Upload
|
32 |
|
33 |
if __name__ == "__main__":
|
34 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
from transformers import DetrImageProcessor, DetrForObjectDetection
|
4 |
+
import torch
|
5 |
+
from PIL import Image, ImageDraw
|
6 |
|
7 |
+
# Load BLIP model for captioning
|
8 |
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
9 |
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
|
10 |
|
11 |
+
# Load DETR model for object detection (Detectron)
|
12 |
+
detr_processor = DetrImageProcessor.from_pretrained("facebook/detr-resnet-50")
|
13 |
+
detr_model = DetrForObjectDetection.from_pretrained("facebook/detr-resnet-50")
|
14 |
+
|
15 |
+
# List of objects for dynamic description
|
16 |
+
objects_of_interest = ["tree", "water", "mountain", "beach"]
|
17 |
+
|
18 |
def generate_caption(image):
|
19 |
+
# Process the image for caption generation
|
20 |
inputs = processor(images=image, return_tensors="pt")
|
|
|
|
|
21 |
out = model.generate(**inputs)
|
|
|
|
|
22 |
caption = processor.decode(out[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
# Object Detection: Detect objects in the image
|
25 |
+
inputs = detr_processor(images=image, return_tensors="pt")
|
26 |
+
outputs = detr_model(**inputs)
|
27 |
+
|
28 |
+
# Get detected objects and their labels
|
29 |
+
target_sizes = torch.tensor([image.size[::-1]])
|
30 |
+
results = detr_processor.post_process_object_detection(outputs, target_sizes=target_sizes, threshold=0.9)[0]
|
31 |
+
|
32 |
+
detected_objects = []
|
33 |
+
for score, label in zip(results["scores"], results["labels"]):
|
34 |
+
if label.item() == 23: # label for "tree"
|
35 |
+
detected_objects.append("trees")
|
36 |
+
if label.item() == 8: # label for "water"
|
37 |
+
detected_objects.append("water")
|
38 |
+
if label.item() == 72: # label for "mountain"
|
39 |
+
detected_objects.append("mountains")
|
40 |
+
|
41 |
+
# Custom dynamic description based on detected objects
|
42 |
+
description = "This image includes "
|
43 |
+
if detected_objects:
|
44 |
+
description += ", ".join(detected_objects)
|
45 |
+
else:
|
46 |
+
description += "various elements of nature."
|
47 |
+
|
48 |
+
description += ". It provides a beautiful view that invites relaxation and exploration."
|
49 |
+
|
50 |
+
return caption + "\n" + description
|
51 |
+
|
52 |
+
# Gradio Interface
|
53 |
iface = gr.Interface(fn=generate_caption,
|
54 |
inputs=gr.Image(type="pil"),
|
55 |
outputs=gr.Textbox(),
|
56 |
+
title="Dynamic Image Caption Generator",
|
57 |
+
description="Upload any image and get a detailed description of its contents.")
|
58 |
|
59 |
if __name__ == "__main__":
|
60 |
iface.launch()
|