File size: 6,962 Bytes
49e447c
 
 
70802d0
49e447c
70802d0
49a3a3a
49e447c
 
 
68f71c4
94fc71e
70802d0
 
 
49e447c
 
49a3a3a
 
 
 
49e447c
 
 
 
 
 
 
 
70802d0
 
 
94fc71e
 
 
 
 
 
49a3a3a
94fc71e
 
 
70802d0
 
 
 
 
 
 
94fc71e
 
 
 
 
70802d0
 
 
 
 
 
 
49a3a3a
70802d0
 
 
 
 
 
 
 
 
94fc71e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49a3a3a
94fc71e
 
 
70802d0
 
49a3a3a
70802d0
 
 
 
 
 
 
94fc71e
 
 
 
 
 
 
70802d0
 
94fc71e
 
70802d0
49e447c
94fc71e
49e447c
70802d0
94fc71e
 
 
 
 
49e447c
 
 
 
 
 
 
70802d0
 
 
 
 
 
 
 
 
 
 
68f71c4
 
94fc71e
 
68f71c4
94fc71e
49e447c
 
 
94fc71e
49e447c
 
70802d0
 
49e447c
 
 
 
 
94fc71e
 
 
49e447c
 
49a3a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e447c
f6a6373
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
from flask import Flask, render_template, request, jsonify
import numpy as np
from sklearn.linear_model import LogisticRegression
import cv2
import os
from werkzeug.utils import secure_filename
from scipy.interpolate import splprep, splev

app = Flask(__name__)

UPLOAD_FOLDER = '/tmp/uploads'
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov'}

def train_dummy_model():
    X = np.array([
        [0.5, 0.0, 0.4, 0.5, 30, 0],
        [0.5, 0.5, 0.5, 0.5, 35, 2],
        [0.6, 0.2, 0.5, 0.6, 32, 1],
        [0.5, 0.4, 0.5, 0.4, 34, 0],
    ])
    y = np.array([0, 1, 0, 1])
    model = LogisticRegression()
    model.fit(X, y)
    return model

model = train_dummy_model()

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def smooth_trajectory(points):
    if len(points) < 3:
        return points
    x = [p["x"] for p in points]
    y = [p["y"] for p in points]
    tck, u = splprep([x, y], s=0)
    u_new = np.linspace(0, 1, 50)
    x_new, y_new = splev(u_new, tck)
    return [{"x": x, "y": y} for x, y in zip(x_new, y_new)]

def process_video(video_path):
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        return None, None, "Failed to open video"

    actual_path = []
    frame_count = 0
    spin = 0
    last_point = None
    pitching_detected = False
    impact_detected = False
    y_positions = []

    while cap.isOpened():
        ret, frame = cap.read()
        if not ret:
            break

        hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        mask = cv2.inRange(hsv, (0, 120, 70), (10, 255, 255))
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        if contours:
            c = max(contours, key=cv2.contourArea)
            x, y, w, h = cv2.boundingRect(c)
            center_x = x + w / 2
            center_y = y + h / 2
            norm_x = center_x / 1280
            norm_y = center_y / 720
            current_point = (norm_x, norm_y)

            if last_point != current_point:
                actual_path.append({"x": norm_x, "y": norm_y})
                y_positions.append(norm_y)
                last_point = current_point

            if len(y_positions) > 2 and not pitching_detected:
                if y_positions[-1] < y_positions[-2] and y_positions[-2] < y_positions[-3]:
                    pitching_detected = True
                    pitching_x = actual_path[-2]["x"]
                    pitching_y = actual_path[-2]["y"]

            if len(actual_path) > 2 and not impact_detected:
                speed_current = abs(y_positions[-1] - y_positions[-2])
                speed_prev = abs(y_positions[-2] - y_positions[-3])
                if speed_current < speed_prev * 0.3:
                    impact_detected = True
                    impact_x = actual_path[-1]["x"]
                    impact_y = actual_path[-1]["y"]

        frame_count += 1
        if frame_count > 50:
            break

    cap.release()

    if not actual_path:
        return None, None, "No ball detected in video"

    if not pitching_detected:
        pitching_x = actual_path[len(actual_path)//2]["x"]
        pitching_y = actual_path[len(actual_path)//2]["y"]

    if not impact_detected:
        impact_x = actual_path[-1]["x"]
        impact_y = actual_path[-1]["y"]

    fps = cap.get(cv2.CAP_PROP_FPS) or 30
    speed = (len(actual_path) / (frame_count / fps)) * 0.5
    actual_path = smooth_trajectory(actual_path)
    projected_path = [
        {"x": impact_x, "y": impact_y},
        {"x": impact_x + spin * 0.1, "y": 1.0}
    ]

    pitching_status = "Inline" if 0.4 <= pitching_x <= 0.6 else "Outside Leg" if pitching_x < 0.4 else "Outside Off"
    impact_status = "Inline" if 0.4 <= impact_x <= 0.6 else "Outside"
    wicket_status = "Hitting" if 0.4 <= projected_path[-1]["x"] <= 0.6 else "Missing"

    return actual_path, projected_path, pitching_x, pitching_y, impact_x, impact_y, speed, spin, pitching_status, impact_status, wicket_status

@app.route('/')
def index():
    return render_template('index.html')

@app.route('/analyze', methods=['POST'])
def analyze():
    if 'video' not in request.files:
        return jsonify({'error': 'No video uploaded'}), 400

    file = request.files['video']
    if file.filename == '' or not allowed_file(file.filename):
        return jsonify({'error': 'Invalid file'}), 400

    filename = secure_filename(file.filename)
    video_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
    file.save(video_path)

    result = process_video(video_path)
    if result[0] is None:
        os.remove(video_path)
        return jsonify({'error': result[2]}), 400

    actual_path, projected_path, pitching_x, pitching_y, impact_x, impact_y, speed, spin, pitching_status, impact_status, wicket_status = result

    features = np.array([[pitching_x, pitching_y, impact_x, impact_y, speed, spin]])
    prediction = model.predict(features)[0]
    confidence = min(model.predict_proba(features)[0][prediction], 0.99)
    decision = "Out" if prediction == 1 else "Not Out"

    os.remove(video_path)

    return jsonify({
        'actual_path': actual_path,
        'projected_path': projected_path,
        'decision': decision,
        'confidence': round(confidence, 2),
        'pitching': {'x': pitching_x, 'y': pitching_y, 'status': pitching_status},
        'impact': {'x': impact_x, 'y': impact_y, 'status': impact_status},
        'wicket': wicket_status
    })

@app.route('/analyze_data', methods=['POST'])
def analyze_data():
    data = request.get_json()
    actual_path = data['actual_path']
    projected_path = data['projected_path']
    pitching = data['pitching']
    impact = data['impact']
    speed = data['speed']
    spin = data['spin']

    pitching_x = pitching['x']
    pitching_y = pitching['y']
    impact_x = impact['x']
    impact_y = impact['y']

    pitching_status = "Inline" if 0.4 <= pitching_x <= 0.6 else "Outside Leg" if pitching_x < 0.4 else "Outside Off"
    impact_status = "Inline" if 0.4 <= impact_x <= 0.6 else "Outside"
    wicket_status = "Hitting" if 0.4 <= projected_path[-1]["x"] <= 0.6 else "Missing"

    features = np.array([[pitching_x, pitching_y, impact_x, impact_y, speed, spin]])
    prediction = model.predict(features)[0]
    confidence = min(model.predict_proba(features)[0][prediction], 0.99)
    decision = "Out" if prediction == 1 else "Not Out"

    return jsonify({
        'actual_path': actual_path,
        'projected_path': projected_path,
        'decision': decision,
        'confidence': round(confidence, 2),
        'pitching': {'x': pitching_x, 'y': pitching_y, 'status': pitching_status},
        'impact': {'x': impact_x, 'y': impact_y, 'status': impact_status},
        'wicket': wicket_status
    })

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=7860, debug=True)