Update app.py
Browse files
app.py
CHANGED
@@ -4,23 +4,21 @@ from sklearn.linear_model import LogisticRegression
|
|
4 |
import cv2
|
5 |
import os
|
6 |
from werkzeug.utils import secure_filename
|
7 |
-
from scipy.interpolate import splprep, splev
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
11 |
-
# Configure upload folder
|
12 |
UPLOAD_FOLDER = '/tmp/uploads'
|
13 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
14 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
15 |
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov'}
|
16 |
|
17 |
-
# Dummy ML model for LBW decision (to be replaced with a real model)
|
18 |
def train_dummy_model():
|
19 |
X = np.array([
|
20 |
-
[0.5, 0.0, 0.4, 0.5, 30, 0],
|
21 |
-
[0.5, 0.5, 0.5, 0.5, 35, 2],
|
22 |
-
[0.6, 0.2, 0.5, 0.6, 32, 1],
|
23 |
-
[0.5, 0.4, 0.5, 0.4, 34, 0],
|
24 |
])
|
25 |
y = np.array([0, 1, 0, 1])
|
26 |
model = LogisticRegression()
|
@@ -38,7 +36,7 @@ def smooth_trajectory(points):
|
|
38 |
x = [p["x"] for p in points]
|
39 |
y = [p["y"] for p in points]
|
40 |
tck, u = splprep([x, y], s=0)
|
41 |
-
u_new = np.linspace(0, 1, 50)
|
42 |
x_new, y_new = splev(u_new, tck)
|
43 |
return [{"x": x, "y": y} for x, y in zip(x_new, y_new)]
|
44 |
|
@@ -61,7 +59,7 @@ def process_video(video_path):
|
|
61 |
break
|
62 |
|
63 |
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
64 |
-
mask = cv2.inRange(hsv, (0, 120, 70), (10, 255, 255))
|
65 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
66 |
|
67 |
if contours:
|
@@ -78,24 +76,22 @@ def process_video(video_path):
|
|
78 |
y_positions.append(norm_y)
|
79 |
last_point = current_point
|
80 |
|
81 |
-
# Detect pitching (first significant downward movement)
|
82 |
if len(y_positions) > 2 and not pitching_detected:
|
83 |
if y_positions[-1] < y_positions[-2] and y_positions[-2] < y_positions[-3]:
|
84 |
pitching_detected = True
|
85 |
pitching_x = actual_path[-2]["x"]
|
86 |
pitching_y = actual_path[-2]["y"]
|
87 |
|
88 |
-
# Detect impact (sudden slowdown or stop)
|
89 |
if len(actual_path) > 2 and not impact_detected:
|
90 |
speed_current = abs(y_positions[-1] - y_positions[-2])
|
91 |
speed_prev = abs(y_positions[-2] - y_positions[-3])
|
92 |
-
if speed_current < speed_prev * 0.3:
|
93 |
impact_detected = True
|
94 |
impact_x = actual_path[-1]["x"]
|
95 |
impact_y = actual_path[-1]["y"]
|
96 |
|
97 |
frame_count += 1
|
98 |
-
if frame_count > 50:
|
99 |
break
|
100 |
|
101 |
cap.release()
|
@@ -113,17 +109,12 @@ def process_video(video_path):
|
|
113 |
|
114 |
fps = cap.get(cv2.CAP_PROP_FPS) or 30
|
115 |
speed = (len(actual_path) / (frame_count / fps)) * 0.5
|
116 |
-
|
117 |
-
# Smooth the actual path
|
118 |
actual_path = smooth_trajectory(actual_path)
|
119 |
-
|
120 |
-
# Projected path with basic physics (linear for now, add swing/spin later)
|
121 |
projected_path = [
|
122 |
{"x": impact_x, "y": impact_y},
|
123 |
{"x": impact_x + spin * 0.1, "y": 1.0}
|
124 |
]
|
125 |
|
126 |
-
# Determine pitching and impact status
|
127 |
pitching_status = "Inline" if 0.4 <= pitching_x <= 0.6 else "Outside Leg" if pitching_x < 0.4 else "Outside Off"
|
128 |
impact_status = "Inline" if 0.4 <= impact_x <= 0.6 else "Outside"
|
129 |
wicket_status = "Hitting" if 0.4 <= projected_path[-1]["x"] <= 0.6 else "Missing"
|
@@ -171,5 +162,42 @@ def analyze():
|
|
171 |
'wicket': wicket_status
|
172 |
})
|
173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
if __name__ == '__main__':
|
175 |
app.run(host='0.0.0.0', port=7860, debug=True)
|
|
|
4 |
import cv2
|
5 |
import os
|
6 |
from werkzeug.utils import secure_filename
|
7 |
+
from scipy.interpolate import splprep, splev
|
8 |
|
9 |
app = Flask(__name__)
|
10 |
|
|
|
11 |
UPLOAD_FOLDER = '/tmp/uploads'
|
12 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True)
|
13 |
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
|
14 |
ALLOWED_EXTENSIONS = {'mp4', 'avi', 'mov'}
|
15 |
|
|
|
16 |
def train_dummy_model():
|
17 |
X = np.array([
|
18 |
+
[0.5, 0.0, 0.4, 0.5, 30, 0],
|
19 |
+
[0.5, 0.5, 0.5, 0.5, 35, 2],
|
20 |
+
[0.6, 0.2, 0.5, 0.6, 32, 1],
|
21 |
+
[0.5, 0.4, 0.5, 0.4, 34, 0],
|
22 |
])
|
23 |
y = np.array([0, 1, 0, 1])
|
24 |
model = LogisticRegression()
|
|
|
36 |
x = [p["x"] for p in points]
|
37 |
y = [p["y"] for p in points]
|
38 |
tck, u = splprep([x, y], s=0)
|
39 |
+
u_new = np.linspace(0, 1, 50)
|
40 |
x_new, y_new = splev(u_new, tck)
|
41 |
return [{"x": x, "y": y} for x, y in zip(x_new, y_new)]
|
42 |
|
|
|
59 |
break
|
60 |
|
61 |
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
|
62 |
+
mask = cv2.inRange(hsv, (0, 120, 70), (10, 255, 255))
|
63 |
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
64 |
|
65 |
if contours:
|
|
|
76 |
y_positions.append(norm_y)
|
77 |
last_point = current_point
|
78 |
|
|
|
79 |
if len(y_positions) > 2 and not pitching_detected:
|
80 |
if y_positions[-1] < y_positions[-2] and y_positions[-2] < y_positions[-3]:
|
81 |
pitching_detected = True
|
82 |
pitching_x = actual_path[-2]["x"]
|
83 |
pitching_y = actual_path[-2]["y"]
|
84 |
|
|
|
85 |
if len(actual_path) > 2 and not impact_detected:
|
86 |
speed_current = abs(y_positions[-1] - y_positions[-2])
|
87 |
speed_prev = abs(y_positions[-2] - y_positions[-3])
|
88 |
+
if speed_current < speed_prev * 0.3:
|
89 |
impact_detected = True
|
90 |
impact_x = actual_path[-1]["x"]
|
91 |
impact_y = actual_path[-1]["y"]
|
92 |
|
93 |
frame_count += 1
|
94 |
+
if frame_count > 50:
|
95 |
break
|
96 |
|
97 |
cap.release()
|
|
|
109 |
|
110 |
fps = cap.get(cv2.CAP_PROP_FPS) or 30
|
111 |
speed = (len(actual_path) / (frame_count / fps)) * 0.5
|
|
|
|
|
112 |
actual_path = smooth_trajectory(actual_path)
|
|
|
|
|
113 |
projected_path = [
|
114 |
{"x": impact_x, "y": impact_y},
|
115 |
{"x": impact_x + spin * 0.1, "y": 1.0}
|
116 |
]
|
117 |
|
|
|
118 |
pitching_status = "Inline" if 0.4 <= pitching_x <= 0.6 else "Outside Leg" if pitching_x < 0.4 else "Outside Off"
|
119 |
impact_status = "Inline" if 0.4 <= impact_x <= 0.6 else "Outside"
|
120 |
wicket_status = "Hitting" if 0.4 <= projected_path[-1]["x"] <= 0.6 else "Missing"
|
|
|
162 |
'wicket': wicket_status
|
163 |
})
|
164 |
|
165 |
+
@app.route('/analyze_data', methods=['POST'])
|
166 |
+
def analyze_data():
|
167 |
+
data = request.get_json()
|
168 |
+
actual_path = data['actual_path']
|
169 |
+
projected_path = data['projected_path']
|
170 |
+
pitching = data['pitching']
|
171 |
+
impact = data['impact']
|
172 |
+
speed = data['speed']
|
173 |
+
spin = data['spin']
|
174 |
+
|
175 |
+
pitching_x = pitching['x']
|
176 |
+
pitching_y = pitching['y']
|
177 |
+
impact_x = impact['x']
|
178 |
+
impact_y = impact['y']
|
179 |
+
|
180 |
+
pitching_status = "Inline" if 0.4 <= pitching_x <= 0.6 else "Outside Leg" if pitching_x < 0.4 else "Outside Off"
|
181 |
+
impact_status = "Inline" if 0.4 <= impact_x <= 0.6 else "Outside"
|
182 |
+
wicket_status = "Hitting" if 0.4 <= projected_path[-1]["x"] <= 0.6 else "Missing"
|
183 |
+
|
184 |
+
features = np.array([[pitching_x, pitching_y, impact_x, impact_y, speed, spin]])
|
185 |
+
prediction = model.predict(features)[0]
|
186 |
+
confidence = min(model.predict_proba(features)[0][prediction], 0.99)
|
187 |
+
decision = "Out" if prediction == 1 else "Not Out"
|
188 |
+
|
189 |
+
return jsonify({
|
190 |
+
'actual_path': actual_path,
|
191 |
+
'projected_path': projected_path,
|
192 |
+
'decision': decision,
|
193 |
+
'confidence': round(confidence, 2),
|
194 |
+
'pitching': {'x': pitching_x, 'y': pitching_y, 'status': pitching_status},
|
195 |
+
'impact': {'x': impact_x, 'y': impact_y, 'status': impact_status},
|
196 |
+
'wicket': wicket_status
|
197 |
+
})
|
198 |
+
|
199 |
+
if __name__ == '__main__':
|
200 |
+
app.run(debug=True, port=5001)
|
201 |
+
|
202 |
if __name__ == '__main__':
|
203 |
app.run(host='0.0.0.0', port=7860, debug=True)
|