|
import gradio as gr |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline |
|
import csv |
|
|
|
MODEL_URL = "https://huggingface.co/dsfsi/PuoBERTa-News" |
|
WEBSITE_URL = "https://www.kodiks.com/ai_solutions.html" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-News") |
|
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News") |
|
|
|
categories = { |
|
"arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang", |
|
"crime_law_and_justice": "Bosenyi, molao le bosiamisi", |
|
"disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso", |
|
"economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete", |
|
"education": "Thuto", |
|
"environment": "Tikologo", |
|
"health": "Boitekanelo", |
|
"politics": "Dipolotiki", |
|
"religion_and_belief": "Bodumedi le tumelo", |
|
"society": "Setšhaba" |
|
} |
|
|
|
def prediction(news): |
|
classifier = pipeline("text-classification", tokenizer=tokenizer, model=model, return_all_scores=True) |
|
preds = classifier(news) |
|
preds_dict = {categories.get(pred['label'], pred['label']): round(pred['score'], 4) for pred in preds[0]} |
|
return preds_dict |
|
|
|
def file_prediction(file): |
|
news_list = [] |
|
|
|
if file.name.endswith('.csv'): |
|
file.seek(0) |
|
reader = csv.reader(file.read().decode('utf-8').splitlines()) |
|
news_list = [row[0] for row in reader if row] |
|
else: |
|
file.seek(0) |
|
file_content = file.read().decode('utf-8') |
|
news_list = file_content.splitlines() |
|
|
|
results = [] |
|
for news in news_list: |
|
if news.strip(): |
|
pred = prediction(news) |
|
results.append([news, pred]) |
|
|
|
return results |
|
|
|
gradio_ui = gr.Interface( |
|
fn=prediction, |
|
title="Setswana News Classification", |
|
description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.", |
|
inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"), |
|
outputs=gr.Label(num_top_classes=5, label="News categories probabilities"), |
|
theme="default", |
|
article="<p style='text-align: center'>For our other AI works: <a href='https://www.kodiks.com/ai_solutions.html' target='_blank'>https://www.kodiks.com/ai_solutions.html</a> | <a href='https://twitter.com/KodiksBilisim' target='_blank'>Contact us</a></p>", |
|
) |
|
|
|
gradio_file_ui = gr.Interface( |
|
fn=file_prediction, |
|
title="Upload File for Setswana News Classification", |
|
description=f"Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text.", |
|
inputs=gr.File(label="Upload text or CSV file"), |
|
outputs=gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file"), |
|
theme="default" |
|
) |
|
|
|
gradio_combined_ui = gr.TabbedInterface([gradio_ui, gradio_file_ui], ["Text Input", "File Upload"]) |
|
|
|
gradio_combined_ui.launch() |
|
|
|
|