File size: 4,695 Bytes
737fa2d 1a8bc79 ef7b116 737fa2d ff8b196 1a8bc79 737fa2d 1a8bc79 737fa2d 1a8bc79 737fa2d 22a227d 64fc239 22a227d 64fc239 22a227d 8dda11e 22a227d aee328b 8dda11e 64fc239 03fbd41 22a227d 03fbd41 22a227d 03fbd41 22a227d aee328b ea982bd 8dda11e 22a227d 8dda11e 22a227d 737fa2d fce7d31 35eacb4 fce7d31 35eacb4 fce7d31 737fa2d 1a8bc79 737fa2d fc8fa64 aee328b 22a227d aee328b 64fc239 22a227d 737fa2d 8931773 1a8bc79 737fa2d 3af1f54 737fa2d 35eacb4 737fa2d 1a8bc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datasets import load_dataset
import json
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
except Exception:
restart_space()
dataset = load_dataset("dtcxzyw/llvm-apr-benchmark")
total_issues = dataset.num_rows["test"]
bug_id_to_time = dict()
bug_id_by_cat = {
"crash": [],
"miscompilation": [],
"hang": [],
}
for issue in dataset["test"]:
bug_id_to_time[issue["bug_id"]] = pd.to_datetime(issue["knowledge_cutoff"])
bug_id_by_cat[issue["bug_type"]].append(issue["bug_id"])
timeline_xs = []
timeline_ys = []
timeline_cols = []
timeline_bugids = []
model_cnt = 0
for bug_id, time in bug_id_to_time.items():
timeline_xs.append(time)
timeline_ys.append(0)
timeline_cols.append("All")
timeline_bugids.append(bug_id)
cat_cnt = 4
for cat, bug_ids in bug_id_by_cat.items():
cat_cnt -= 1
for bug_id in bug_ids:
timeline_xs.append(bug_id_to_time[bug_id])
timeline_ys.append(cat_cnt)
timeline_cols.append(str(cat).capitalize())
timeline_bugids.append(bug_id)
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH, total_issues)
for row in LEADERBOARD_DF.itertuples():
print(row)
model_cnt += 1
for fix in row.fixed_bug_ids:
timeline_xs.append(bug_id_to_time[fix])
timeline_ys.append(-model_cnt)
timeline_cols.append(row.method_id)
timeline_bugids.append(fix)
timeline_df = pd.DataFrame(
{
"time": timeline_xs,
"model": timeline_ys,
"method_name": timeline_cols,
"bug_id": timeline_bugids,
}
)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.method_name.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.with_hint.name, type="checkboxgroup", label="Hint"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT + f"\nTotal issues: {total_issues}\n", elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF[COLS])
gr.ScatterPlot(
timeline_df,
x="time",
y="model",
color="method_name",
x_label="Time",
y_label="Model",
title="Timeline",
y_lim=(-model_cnt - 1, 1),
tooltip=["bug_id", "method_name", "time"],
)
with gr.TabItem("π Submission", elem_id="llm-benchmark-tab-table", id=1):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=6,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|