File size: 7,504 Bytes
737fa2d 1a8bc79 ef7b116 737fa2d ff8b196 1a8bc79 737fa2d 1a8bc79 737fa2d 1a8bc79 737fa2d f9dd401 737fa2d 22a227d a311ab2 64fc239 989a74a 22a227d 64fc239 a311ab2 4d6234b 57fa966 989a74a 22a227d 8dda11e 22a227d aee328b 8dda11e 64fc239 03fbd41 18620af 913f726 22a227d 03fbd41 22a227d 03fbd41 aee328b ea982bd 8dda11e 18620af 913f726 a311ab2 22a227d 8dda11e a311ab2 22a227d 18620af 913f726 18620af 913f726 bc5e217 5ca85b3 913f726 18620af 913f726 18620af e1ef7e8 989a74a 913f726 989a74a cc27966 989a74a cc27966 989a74a 913f726 989a74a 737fa2d fce7d31 35eacb4 fce7d31 35eacb4 fce7d31 737fa2d 1a8bc79 737fa2d fc8fa64 aee328b 22a227d c2b9ce3 a311ab2 22a227d 18620af 989a74a 737fa2d 8931773 1a8bc79 737fa2d 3af1f54 737fa2d 35eacb4 737fa2d 1a8bc79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datasets import load_dataset
import json
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
dataset = load_dataset("dtcxzyw/llvm-apr-benchmark")
except Exception:
restart_space()
total_issues = dataset.num_rows["test"]
bug_id_to_time = dict()
bug_id_to_type = dict()
bug_id_by_cat = {
"crash": [],
"miscompilation": [],
"hang": [],
}
bug_id_to_comp = dict()
comp_bug_count = dict()
for issue in dataset["test"]:
bug_id_to_time[issue["bug_id"]] = pd.to_datetime(issue["knowledge_cutoff"])
bug_id_by_cat[issue["bug_type"]].append(issue["bug_id"])
bug_id_to_type[issue["bug_id"]] = issue["bug_type"]
bug_id_to_comp[issue["bug_id"]] = issue["hints"]["components"]
for comp in issue["hints"]["components"]:
comp_bug_count[comp] = comp_bug_count.get(comp, 0) + 1
timeline_xs = []
timeline_ys = []
timeline_cols = []
timeline_bugids = []
model_cnt = 0
for bug_id, time in bug_id_to_time.items():
timeline_ys.append(0)
timeline_cols.append("All")
timeline_bugids.append(bug_id)
cat_cnt = 4
for cat, bug_ids in bug_id_by_cat.items():
cat_cnt -= 1
for bug_id in bug_ids:
timeline_ys.append(cat_cnt)
timeline_cols.append(str(cat).capitalize())
timeline_bugids.append(bug_id)
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH, total_issues)
fixed_bug_ids = set()
fixed_bug_ids_fast = set()
for row in LEADERBOARD_DF.itertuples():
print(row)
model_cnt += 1
for fix in row.fixed_bug_ids:
timeline_ys.append(-model_cnt)
timeline_cols.append(row.method_id)
timeline_bugids.append(fix)
fixed_bug_ids.add(fix)
for fix in row.fixed_bug_ids_fast:
fixed_bug_ids_fast.add(fix)
timeline_bugtypes = []
for bug_id in timeline_bugids:
timeline_xs.append(bug_id_to_time[bug_id])
timeline_bugtypes.append(bug_id_to_type[bug_id])
timeline_df = pd.DataFrame(
{
"time": timeline_xs,
"model": timeline_ys,
"method_name": timeline_cols,
"bug_id": timeline_bugids,
"bug_type": timeline_bugtypes,
}
)
fixed_by_cat = dict()
fixed_by_cat_fast = dict()
for bug_id in fixed_bug_ids:
fixed_by_cat[bug_id_to_type[bug_id]] = fixed_by_cat.get(bug_id_to_type[bug_id], 0) + 1
for bug_id in fixed_bug_ids_fast:
fixed_by_cat_fast[bug_id_to_type[bug_id]] = fixed_by_cat_fast.get(bug_id_to_type[bug_id], 0) + 1
fixed_by_cat["All"] = len(fixed_bug_ids)
bug_id_by_cat["All"] = [0] * total_issues
fixed_by_cat_fast["All"] = len(fixed_bug_ids_fast)
fixed_by_cat_df = pd.DataFrame(
{
"Category": [str(cat).capitalize() for cat in fixed_by_cat.keys()],
"Total": [len(bug_id_by_cat[cat]) for cat in fixed_by_cat.keys()],
"Repaired": list(fixed_by_cat.values()),
"Repair Rate (%)": [
round(fixed_by_cat[cat] / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys()
],
"Repaired (Fast)": [fixed_by_cat_fast.get(cat, 0) for cat in fixed_by_cat.keys()],
"Repair Rate (Fast) (%)": [
round(fixed_by_cat_fast.get(cat, 0) / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys()
],
}
)
fixed_by_cat_df.sort_values("Total", inplace=True, ascending=False)
fixed_by_comp = dict()
for bug_id in fixed_bug_ids:
for comp in bug_id_to_comp[bug_id]:
fixed_by_comp[comp] = fixed_by_comp.get(comp, 0) + 1
fixed_by_comp_fast = dict()
for bug_id in fixed_bug_ids_fast:
for comp in bug_id_to_comp[bug_id]:
fixed_by_comp_fast[comp] = fixed_by_comp_fast.get(comp, 0) + 1
fixed_by_comp_df = pd.DataFrame(
{
"Component": list(comp_bug_count.keys()),
"Total": list(comp_bug_count.values()),
"Repaired": [fixed_by_comp.get(comp, 0) for comp in comp_bug_count.keys()],
"Repair Rate (%)": [
round(fixed_by_comp.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys()
],
"Repaired (Fast)": [fixed_by_comp_fast.get(comp, 0) for comp in comp_bug_count.keys()],
"Repair Rate (Fast) (%)": [
round(fixed_by_comp_fast.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys()
],
}
)
fixed_by_comp_df.sort_values("Total", inplace=True, ascending=False)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.method_name.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.with_hint.name, type="checkboxgroup", label="Hint"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT + f"\nTotal issues: {total_issues}\n", elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF[COLS])
gr.ScatterPlot(
timeline_df,
x="time",
y="model",
color="method_name",
x_label="Time",
y_label="Model",
title="Timeline",
y_lim=(-model_cnt - 1, 4),
tooltip=["bug_id", "method_name", "time", "bug_type"],
)
gr.Dataframe(fixed_by_cat_df)
gr.Dataframe(fixed_by_comp_df)
with gr.TabItem("π Submission", elem_id="llm-benchmark-tab-table", id=1):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=6,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|