File size: 7,504 Bytes
737fa2d
 
 
 
 
1a8bc79
ef7b116
737fa2d
 
 
 
 
 
 
 
 
 
 
 
 
 
ff8b196
1a8bc79
737fa2d
 
 
 
 
1a8bc79
737fa2d
 
 
 
1a8bc79
 
 
 
 
 
737fa2d
f9dd401
737fa2d
 
 
22a227d
 
a311ab2
64fc239
 
 
 
 
989a74a
 
22a227d
 
64fc239
a311ab2
4d6234b
57fa966
989a74a
22a227d
 
 
8dda11e
22a227d
 
 
aee328b
8dda11e
64fc239
 
 
 
 
 
 
03fbd41
18620af
913f726
22a227d
03fbd41
22a227d
03fbd41
aee328b
ea982bd
8dda11e
18620af
913f726
 
a311ab2
 
 
 
22a227d
 
 
 
 
8dda11e
a311ab2
22a227d
 
18620af
913f726
18620af
 
913f726
 
bc5e217
5ca85b3
913f726
18620af
 
 
 
 
 
 
 
913f726
 
 
 
18620af
 
e1ef7e8
989a74a
 
 
 
913f726
 
 
 
989a74a
 
cc27966
 
 
989a74a
cc27966
989a74a
913f726
 
 
 
989a74a
 
 
737fa2d
 
 
 
 
 
 
 
fce7d31
 
 
 
 
35eacb4
fce7d31
 
35eacb4
fce7d31
 
737fa2d
 
 
 
 
 
 
1a8bc79
737fa2d
 
fc8fa64
aee328b
22a227d
 
 
 
 
 
 
 
c2b9ce3
a311ab2
22a227d
18620af
989a74a
737fa2d
8931773
1a8bc79
737fa2d
 
3af1f54
737fa2d
 
 
35eacb4
737fa2d
 
 
 
 
 
 
1a8bc79
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datasets import load_dataset
import json

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    EVALUATION_QUEUE_TEXT,
    INTRODUCTION_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
    COLS,
    AutoEvalColumn,
    fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN
from src.populate import get_leaderboard_df


def restart_space():
    API.restart_space(repo_id=REPO_ID)


### Space initialisation
try:
    print(EVAL_REQUESTS_PATH)
    snapshot_download(
        repo_id=QUEUE_REPO,
        local_dir=EVAL_REQUESTS_PATH,
        repo_type="dataset",
        tqdm_class=None,
        etag_timeout=30,
        token=TOKEN,
    )
    dataset = load_dataset("dtcxzyw/llvm-apr-benchmark")
except Exception:
    restart_space()

total_issues = dataset.num_rows["test"]
bug_id_to_time = dict()
bug_id_to_type = dict()
bug_id_by_cat = {
    "crash": [],
    "miscompilation": [],
    "hang": [],
}
bug_id_to_comp = dict()
comp_bug_count = dict()
for issue in dataset["test"]:
    bug_id_to_time[issue["bug_id"]] = pd.to_datetime(issue["knowledge_cutoff"])
    bug_id_by_cat[issue["bug_type"]].append(issue["bug_id"])
    bug_id_to_type[issue["bug_id"]] = issue["bug_type"]
    bug_id_to_comp[issue["bug_id"]] = issue["hints"]["components"]
    for comp in issue["hints"]["components"]:
        comp_bug_count[comp] = comp_bug_count.get(comp, 0) + 1
timeline_xs = []
timeline_ys = []
timeline_cols = []
timeline_bugids = []
model_cnt = 0
for bug_id, time in bug_id_to_time.items():
    timeline_ys.append(0)
    timeline_cols.append("All")
    timeline_bugids.append(bug_id)
cat_cnt = 4
for cat, bug_ids in bug_id_by_cat.items():
    cat_cnt -= 1
    for bug_id in bug_ids:
        timeline_ys.append(cat_cnt)
        timeline_cols.append(str(cat).capitalize())
        timeline_bugids.append(bug_id)
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH, total_issues)
fixed_bug_ids = set()
fixed_bug_ids_fast = set()
for row in LEADERBOARD_DF.itertuples():
    print(row)
    model_cnt += 1
    for fix in row.fixed_bug_ids:
        timeline_ys.append(-model_cnt)
        timeline_cols.append(row.method_id)
        timeline_bugids.append(fix)
        fixed_bug_ids.add(fix)
    for fix in row.fixed_bug_ids_fast:
        fixed_bug_ids_fast.add(fix)
timeline_bugtypes = []
for bug_id in timeline_bugids:
    timeline_xs.append(bug_id_to_time[bug_id])
    timeline_bugtypes.append(bug_id_to_type[bug_id])
timeline_df = pd.DataFrame(
    {
        "time": timeline_xs,
        "model": timeline_ys,
        "method_name": timeline_cols,
        "bug_id": timeline_bugids,
        "bug_type": timeline_bugtypes,
    }
)
fixed_by_cat = dict()
fixed_by_cat_fast = dict()
for bug_id in fixed_bug_ids:
    fixed_by_cat[bug_id_to_type[bug_id]] = fixed_by_cat.get(bug_id_to_type[bug_id], 0) + 1
for bug_id in fixed_bug_ids_fast:
    fixed_by_cat_fast[bug_id_to_type[bug_id]] = fixed_by_cat_fast.get(bug_id_to_type[bug_id], 0) + 1
fixed_by_cat["All"] = len(fixed_bug_ids)
bug_id_by_cat["All"] = [0] * total_issues
fixed_by_cat_fast["All"] = len(fixed_bug_ids_fast)
fixed_by_cat_df = pd.DataFrame(
    {
        "Category": [str(cat).capitalize() for cat in fixed_by_cat.keys()],
        "Total": [len(bug_id_by_cat[cat]) for cat in fixed_by_cat.keys()],
        "Repaired": list(fixed_by_cat.values()),
        "Repair Rate (%)": [
            round(fixed_by_cat[cat] / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys()
        ],
        "Repaired (Fast)": [fixed_by_cat_fast.get(cat, 0) for cat in fixed_by_cat.keys()],
        "Repair Rate (Fast) (%)": [
            round(fixed_by_cat_fast.get(cat, 0) / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys()
        ],
    }
)
fixed_by_cat_df.sort_values("Total", inplace=True, ascending=False)
fixed_by_comp = dict()
for bug_id in fixed_bug_ids:
    for comp in bug_id_to_comp[bug_id]:
        fixed_by_comp[comp] = fixed_by_comp.get(comp, 0) + 1
fixed_by_comp_fast = dict()
for bug_id in fixed_bug_ids_fast:
    for comp in bug_id_to_comp[bug_id]:
        fixed_by_comp_fast[comp] = fixed_by_comp_fast.get(comp, 0) + 1
fixed_by_comp_df = pd.DataFrame(
    {
        "Component": list(comp_bug_count.keys()),
        "Total": list(comp_bug_count.values()),
        "Repaired": [fixed_by_comp.get(comp, 0) for comp in comp_bug_count.keys()],
        "Repair Rate (%)": [
            round(fixed_by_comp.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys()
        ],
        "Repaired (Fast)": [fixed_by_comp_fast.get(comp, 0) for comp in comp_bug_count.keys()],
        "Repair Rate (Fast) (%)": [
            round(fixed_by_comp_fast.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys()
        ],
    }
)
fixed_by_comp_df.sort_values("Total", inplace=True, ascending=False)


def init_leaderboard(dataframe):
    if dataframe is None or dataframe.empty:
        raise ValueError("Leaderboard DataFrame is empty or None.")
    return Leaderboard(
        value=dataframe,
        datatype=[c.type for c in fields(AutoEvalColumn)],
        select_columns=SelectColumns(
            default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
            cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
            label="Select Columns to Display:",
        ),
        search_columns=[AutoEvalColumn.method_name.name],
        hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
        filter_columns=[
            ColumnFilter(AutoEvalColumn.with_hint.name, type="checkboxgroup", label="Hint"),
        ],
        bool_checkboxgroup_label="Hide models",
        interactive=False,
    )


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT + f"\nTotal issues: {total_issues}\n", elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("πŸ… Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
            leaderboard = init_leaderboard(LEADERBOARD_DF[COLS])
            gr.ScatterPlot(
                timeline_df,
                x="time",
                y="model",
                color="method_name",
                x_label="Time",
                y_label="Model",
                title="Timeline",
                y_lim=(-model_cnt - 1, 4),
                tooltip=["bug_id", "method_name", "time", "bug_type"],
            )
            gr.Dataframe(fixed_by_cat_df)
            gr.Dataframe(fixed_by_comp_df)

        with gr.TabItem("πŸš€ Submission", elem_id="llm-benchmark-tab-table", id=1):
            gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

    with gr.Row():
        with gr.Accordion("πŸ“™ Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=6,
                elem_id="citation-button",
                show_copy_button=True,
            )

scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()