dtcxzyw's picture
Update
913f726 unverified
import gradio as gr
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
from datasets import load_dataset
import json
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
EVALUATION_QUEUE_TEXT,
INTRODUCTION_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
from src.display.utils import (
COLS,
AutoEvalColumn,
fields,
)
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO, REPO_ID, TOKEN
from src.populate import get_leaderboard_df
def restart_space():
API.restart_space(repo_id=REPO_ID)
### Space initialisation
try:
print(EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=QUEUE_REPO,
local_dir=EVAL_REQUESTS_PATH,
repo_type="dataset",
tqdm_class=None,
etag_timeout=30,
token=TOKEN,
)
dataset = load_dataset("dtcxzyw/llvm-apr-benchmark")
except Exception:
restart_space()
total_issues = dataset.num_rows["test"]
bug_id_to_time = dict()
bug_id_to_type = dict()
bug_id_by_cat = {
"crash": [],
"miscompilation": [],
"hang": [],
}
bug_id_to_comp = dict()
comp_bug_count = dict()
for issue in dataset["test"]:
bug_id_to_time[issue["bug_id"]] = pd.to_datetime(issue["knowledge_cutoff"])
bug_id_by_cat[issue["bug_type"]].append(issue["bug_id"])
bug_id_to_type[issue["bug_id"]] = issue["bug_type"]
bug_id_to_comp[issue["bug_id"]] = issue["hints"]["components"]
for comp in issue["hints"]["components"]:
comp_bug_count[comp] = comp_bug_count.get(comp, 0) + 1
timeline_xs = []
timeline_ys = []
timeline_cols = []
timeline_bugids = []
model_cnt = 0
for bug_id, time in bug_id_to_time.items():
timeline_ys.append(0)
timeline_cols.append("All")
timeline_bugids.append(bug_id)
cat_cnt = 4
for cat, bug_ids in bug_id_by_cat.items():
cat_cnt -= 1
for bug_id in bug_ids:
timeline_ys.append(cat_cnt)
timeline_cols.append(str(cat).capitalize())
timeline_bugids.append(bug_id)
LEADERBOARD_DF = get_leaderboard_df(EVAL_REQUESTS_PATH, total_issues)
fixed_bug_ids = set()
fixed_bug_ids_fast = set()
for row in LEADERBOARD_DF.itertuples():
print(row)
model_cnt += 1
for fix in row.fixed_bug_ids:
timeline_ys.append(-model_cnt)
timeline_cols.append(row.method_id)
timeline_bugids.append(fix)
fixed_bug_ids.add(fix)
for fix in row.fixed_bug_ids_fast:
fixed_bug_ids_fast.add(fix)
timeline_bugtypes = []
for bug_id in timeline_bugids:
timeline_xs.append(bug_id_to_time[bug_id])
timeline_bugtypes.append(bug_id_to_type[bug_id])
timeline_df = pd.DataFrame(
{
"time": timeline_xs,
"model": timeline_ys,
"method_name": timeline_cols,
"bug_id": timeline_bugids,
"bug_type": timeline_bugtypes,
}
)
fixed_by_cat = dict()
fixed_by_cat_fast = dict()
for bug_id in fixed_bug_ids:
fixed_by_cat[bug_id_to_type[bug_id]] = fixed_by_cat.get(bug_id_to_type[bug_id], 0) + 1
for bug_id in fixed_bug_ids_fast:
fixed_by_cat_fast[bug_id_to_type[bug_id]] = fixed_by_cat_fast.get(bug_id_to_type[bug_id], 0) + 1
fixed_by_cat["All"] = len(fixed_bug_ids)
bug_id_by_cat["All"] = [0] * total_issues
fixed_by_cat_fast["All"] = len(fixed_bug_ids_fast)
fixed_by_cat_df = pd.DataFrame(
{
"Category": [str(cat).capitalize() for cat in fixed_by_cat.keys()],
"Total": [len(bug_id_by_cat[cat]) for cat in fixed_by_cat.keys()],
"Repaired": list(fixed_by_cat.values()),
"Repair Rate (%)": [
round(fixed_by_cat[cat] / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys()
],
"Repaired (Fast)": [fixed_by_cat_fast.get(cat, 0) for cat in fixed_by_cat.keys()],
"Repair Rate (Fast) (%)": [
round(fixed_by_cat_fast.get(cat, 0) / len(bug_id_by_cat[cat]) * 100, 1) for cat in fixed_by_cat.keys()
],
}
)
fixed_by_cat_df.sort_values("Total", inplace=True, ascending=False)
fixed_by_comp = dict()
for bug_id in fixed_bug_ids:
for comp in bug_id_to_comp[bug_id]:
fixed_by_comp[comp] = fixed_by_comp.get(comp, 0) + 1
fixed_by_comp_fast = dict()
for bug_id in fixed_bug_ids_fast:
for comp in bug_id_to_comp[bug_id]:
fixed_by_comp_fast[comp] = fixed_by_comp_fast.get(comp, 0) + 1
fixed_by_comp_df = pd.DataFrame(
{
"Component": list(comp_bug_count.keys()),
"Total": list(comp_bug_count.values()),
"Repaired": [fixed_by_comp.get(comp, 0) for comp in comp_bug_count.keys()],
"Repair Rate (%)": [
round(fixed_by_comp.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys()
],
"Repaired (Fast)": [fixed_by_comp_fast.get(comp, 0) for comp in comp_bug_count.keys()],
"Repair Rate (Fast) (%)": [
round(fixed_by_comp_fast.get(comp, 0) / comp_bug_count[comp] * 100, 1) for comp in comp_bug_count.keys()
],
}
)
fixed_by_comp_df.sort_values("Total", inplace=True, ascending=False)
def init_leaderboard(dataframe):
if dataframe is None or dataframe.empty:
raise ValueError("Leaderboard DataFrame is empty or None.")
return Leaderboard(
value=dataframe,
datatype=[c.type for c in fields(AutoEvalColumn)],
select_columns=SelectColumns(
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default],
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden],
label="Select Columns to Display:",
),
search_columns=[AutoEvalColumn.method_name.name],
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden],
filter_columns=[
ColumnFilter(AutoEvalColumn.with_hint.name, type="checkboxgroup", label="Hint"),
],
bool_checkboxgroup_label="Hide models",
interactive=False,
)
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT + f"\nTotal issues: {total_issues}\n", elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("πŸ… Leaderboard", elem_id="llm-benchmark-tab-table", id=0):
leaderboard = init_leaderboard(LEADERBOARD_DF[COLS])
gr.ScatterPlot(
timeline_df,
x="time",
y="model",
color="method_name",
x_label="Time",
y_label="Model",
title="Timeline",
y_lim=(-model_cnt - 1, 4),
tooltip=["bug_id", "method_name", "time", "bug_type"],
)
gr.Dataframe(fixed_by_cat_df)
gr.Dataframe(fixed_by_comp_df)
with gr.TabItem("πŸš€ Submission", elem_id="llm-benchmark-tab-table", id=1):
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
with gr.Accordion("πŸ“™ Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=6,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()