speech-to-text / app.py
ducdatit2002's picture
Upload 2 files
08fe07d verified
# app.py
# -*- coding: utf-8 -*-
"""
Vietnamese End-to-End Speech Recognition using Wav2Vec 2.0 with Speaker Diarization.
Streamlit Application with merged speaker segments and timestamps.
"""
import os
import zipfile
import torch
import soundfile as sf
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import kenlm
from pyctcdecode import Alphabet, BeamSearchDecoderCTC, LanguageModel
from huggingface_hub import hf_hub_download
import streamlit as st
import numpy as np
import librosa
import logging
logging.basicConfig(level=logging.INFO)
@st.cache_resource(show_spinner=False)
def load_model_and_tokenizer(cache_dir='./cache/'):
st.info("Loading processor and model...")
processor = Wav2Vec2Processor.from_pretrained(
"nguyenvulebinh/wav2vec2-base-vietnamese-250h",
cache_dir=cache_dir
)
model = Wav2Vec2ForCTC.from_pretrained(
"nguyenvulebinh/wav2vec2-base-vietnamese-250h",
cache_dir=cache_dir
)
st.info("Downloading language model...")
lm_zip_file = hf_hub_download(
repo_id="nguyenvulebinh/wav2vec2-base-vietnamese-250h",
filename="vi_lm_4grams.bin.zip",
cache_dir=cache_dir
)
st.info("Extracting language model...")
with zipfile.ZipFile(lm_zip_file, 'r') as zip_ref:
zip_ref.extractall(cache_dir)
lm_file = os.path.join(cache_dir, 'vi_lm_4grams.bin')
if not os.path.isfile(lm_file):
raise FileNotFoundError(f"Language model file not found: {lm_file}")
st.success("Processor, model, and language model loaded successfully.")
return processor, model, lm_file
@st.cache_resource(show_spinner=False)
def get_decoder_ngram_model(_tokenizer, ngram_lm_path):
st.info("Building decoder with n-gram language model...")
vocab_dict = _tokenizer.get_vocab()
sorted_vocab = sorted((value, key) for (key, value) in vocab_dict.items())
vocab_list = [token for _, token in sorted_vocab][:-2] # Exclude special tokens
alphabet = Alphabet.build_alphabet(vocab_list)
lm_model = kenlm.Model(ngram_lm_path)
decoder = BeamSearchDecoderCTC(alphabet, language_model=LanguageModel(lm_model))
st.success("Decoder built successfully.")
return decoder
def transcribe_chunk(model, processor, decoder, speech_chunk, sampling_rate):
if speech_chunk.ndim > 1:
speech_chunk = np.mean(speech_chunk, axis=1)
speech_chunk = speech_chunk.astype(np.float32)
target_sr = 16000
if sampling_rate != target_sr:
speech_chunk = librosa.resample(speech_chunk, orig_sr=sampling_rate, target_sr=target_sr)
sampling_rate = target_sr
MIN_DURATION = 0.5 # seconds
MIN_SAMPLES = int(MIN_DURATION * sampling_rate)
if len(speech_chunk) < MIN_SAMPLES:
# Pad with zeros
padding = MIN_SAMPLES - len(speech_chunk)
speech_chunk = np.pad(speech_chunk, (0, padding), 'constant')
input_values = processor(
speech_chunk, sampling_rate=sampling_rate, return_tensors="pt"
).input_values
with torch.no_grad():
logits = model(input_values).logits[0]
beam_search_output = decoder.decode(
logits.cpu().detach().numpy(),
beam_width=500
)
return beam_search_output
def alternative_speaker_diarization(audio_file, num_speakers=2):
try:
# Use librosa to load the audio file
y, sr = librosa.load(audio_file, sr=None)
# Rough segmentation based on energy
intervals = librosa.effects.split(y, top_db=30) # Adjust top_db as needed
# Merge very short intervals
MIN_INTERVAL_DURATION = 0.5 # seconds
MIN_SAMPLES = int(MIN_INTERVAL_DURATION * sr)
merged_intervals = []
for interval in intervals:
if merged_intervals and (interval[0] - merged_intervals[-1][1]) < MIN_SAMPLES:
merged_intervals[-1][1] = interval[1]
else:
merged_intervals.append([interval[0], interval[1]])
# Assign speakers cyclically
segments = []
for i, (start, end) in enumerate(merged_intervals):
speaker_id = i % num_speakers
start_time = start / sr
end_time = end / sr
segments.append((start_time, end_time, speaker_id))
return segments
except Exception as e:
st.error(f"Speaker diarization failed: {e}")
# Fallback to a simple equal-length segmentation
audio, sr = sf.read(audio_file)
total_duration = len(audio) / sr
segment_duration = total_duration / num_speakers
segments = []
for i in range(num_speakers):
start = i * segment_duration
end = (i + 1) * segment_duration
segments.append((start, end, i))
return segments
def process_segments(audio_file, segments, model, processor, decoder, sampling_rate=16000):
speech, sr = sf.read(audio_file)
final_transcriptions = []
# Remove duplicate or overlapping segments
unique_segments = []
for segment in sorted(segments, key=lambda x: x[0]):
if not unique_segments or segment[0] >= unique_segments[-1][1]:
unique_segments.append(segment)
for start, end, speaker_id in unique_segments:
start_sample = int(start * sr)
end_sample = int(end * sr)
speech_chunk = speech[start_sample:end_sample]
transcript = transcribe_chunk(model, processor, decoder, speech_chunk, sr)
# Only add non-empty transcripts
if transcript.strip():
# Lưu (start, end, speaker_id, transcript)
final_transcriptions.append((start, end, speaker_id, transcript))
return final_transcriptions
def format_timestamp(seconds):
# Định dạng thời gian thành MM:SS
total_seconds = int(seconds)
mm = total_seconds // 60
ss = total_seconds % 60
return f"{mm:02d}:{ss:02d}"
def merge_speaker_segments(final_transcriptions):
# Gộp các đoạn cùng speaker liên tiếp
if not final_transcriptions:
return []
merged_results = []
prev_start, prev_end, prev_speaker_id, prev_text = final_transcriptions[0]
for i in range(1, len(final_transcriptions)):
start, end, speaker_id, text = final_transcriptions[i]
if speaker_id == prev_speaker_id:
# Cùng speaker, gộp đoạn
prev_end = end
prev_text += " " + text
else:
# Khác speaker
merged_results.append((prev_start, prev_end, prev_speaker_id, prev_text))
prev_start, prev_end, prev_speaker_id, prev_text = start, end, speaker_id, text
# Thêm đoạn cuối cùng
merged_results.append((prev_start, prev_end, prev_speaker_id, prev_text))
return merged_results
def main():
st.title("🇻🇳 Vietnamese Speech Recognition with Speaker Diarization (with merging & timestamps)")
st.write("""
Upload an audio file, select the number of speakers, and get the transcribed text with timestamps and merged segments for each speaker.
""")
# Sidebar for inputs
st.sidebar.header("Input Parameters")
uploaded_file = st.sidebar.file_uploader("Upload Audio File", type=["wav", "mp3", "flac", "m4a"])
num_speakers = st.sidebar.slider("Number of Speakers", min_value=1, max_value=5, value=2, step=1)
if uploaded_file is not None:
# Save the uploaded file to a temporary location
temp_audio_path = "temp_audio_file"
with open(temp_audio_path, "wb") as f:
f.write(uploaded_file.getbuffer())
# Display audio player
st.audio(uploaded_file, format='audio/wav')
if st.button("Transcribe"):
with st.spinner("Processing..."):
try:
# Load models
processor, model, lm_file = load_model_and_tokenizer()
decoder = get_decoder_ngram_model(processor.tokenizer, lm_file)
# Speaker diarization
segments = alternative_speaker_diarization(temp_audio_path, num_speakers=num_speakers)
if not segments:
st.warning("No speech segments detected.")
return
# Process segments
final_transcriptions = process_segments(temp_audio_path, segments, model, processor, decoder)
# Merge consecutive segments of the same speaker
merged_results = merge_speaker_segments(final_transcriptions)
# Display results
if merged_results:
st.success("Transcription Completed!")
transcription_text = ""
for start_time, end_time, speaker_id, transcript in merged_results:
start_str = format_timestamp(start_time)
end_str = format_timestamp(end_time)
line = f"{start_str} - {end_str} - Speaker {speaker_id + 1}: {transcript}"
st.markdown(line)
transcription_text += line + "\n"
# Provide download link
st.download_button(
label="Download Transcription",
data=transcription_text,
file_name="transcription.txt",
mime="text/plain"
)
else:
st.warning("No transcriptions available.")
except Exception as e:
st.error(f"An error occurred during processing: {e}")
# Optionally, remove the temporary file after processing
if os.path.exists(temp_audio_path):
os.remove(temp_audio_path)
else:
st.info("Please upload an audio file to get started.")
if __name__ == '__main__':
main()