File size: 1,349 Bytes
878fb0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
from langchain_community.llms import HuggingFaceEndpoint 
import os 
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
import streamlit as st 

from dotenv import load_dotenv

load_dotenv()


# def qabot(question):
#     llm_hugginface = HuggingFaceEndpoint(repo_id='google/flan-t5-large',token=os.getenv("HUGGINGFACEHUB_API_TOKEN"),temperature=0.5,max_length=128)
#     result= llm_hugginface("Can you write me the capital of {question}")
#     return result

# ans =qabot("india")
# print(ans)

# question = "Who won the FIFA World Cup in the year 1994? "
def qabot(question):
    template = """Question: {question}

    Answer: Let's think step by step."""

    prompt = PromptTemplate.from_template(template)

    repo_id = "mistralai/Mistral-7B-Instruct-v0.2"

    llm = HuggingFaceEndpoint(
        repo_id=repo_id, max_length=128, temperature=0.5, token=os.getenv('HUGGINGFACEHUB_API_TOKEN')
    )
    llm_chain = LLMChain(prompt=prompt, llm=llm)
    result =llm_chain.run(question)
    return result

# print(qabot("Who won the FIFA World Cup in the year 1994? "))



st.header("Langchain Application")

input=st.text_input("Input: ",key="input")
response=qabot(input)

submit=st.button("Ask the question")

## If ask button is clicked

if submit:
    st.subheader("The Response is")
    st.write(response)