File size: 4,272 Bytes
c2b7cdc
 
 
 
69ccc49
c2b7cdc
 
 
 
 
 
119036b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2b7cdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af18329
 
 
 
 
 
 
c2b7cdc
af18329
c2b7cdc
af18329
119036b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd4a984
c2b7cdc
cd4a984
c2b7cdc
 
af18329
c2b7cdc
af18329
c2b7cdc
af18329
c2b7cdc
af18329
c2b7cdc
af18329
 
c2b7cdc
af18329
c2b7cdc
4462db7
c2b7cdc
 
 
 
af18329
 
 
 
c2b7cdc
af18329
 
c2b7cdc
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import cv2
import streamlit as st
import tempfile
import torch
import torch.nn as nn
from torchvision import transforms
from mtcnn import MTCNN
from skimage.feature import hog
import joblib
import numpy as np

class VGGFaceEmbedding(nn.Module):
    def __init__(self):
        super(VGGFaceEmbedding, self).__init__()
        self.base_model = resnet50(pretrained=True)
        self.base_model = nn.Sequential(*list(self.base_model.children())[:-2])
        self.pooling = nn.AdaptiveAvgPool2d((1, 1))
        self.flatten = nn.Flatten()

    def forward(self, x):
        x = self.base_model(x)
        x = self.pooling(x)
        x = self.flatten(x)
        return x

class L1Dist(nn.Module):
    def __init__(self):
        super(L1Dist, self).__init__()

    def forward(self, input_embedding, validation_embedding):
        return torch.abs(input_embedding - validation_embedding)

class SiameseNetwork(nn.Module):
    def __init__(self):
        super(SiameseNetwork, self).__init__()
        self.embedding = VGGFaceEmbedding()
        self.distance = L1Dist()
        self.fc1 = nn.Linear(2048, 512)
        self.fc2 = nn.Linear(512, 1)
        self.sigmoid = nn.Sigmoid()

    def forward(self, input_image, validation_image):
        input_embedding = self.embedding(input_image)
        validation_embedding = self.embedding(validation_image)
        distances = self.distance(input_embedding, validation_embedding)
        x = self.fc1(distances)
        x = self.fc2(x)
        x = self.sigmoid(x)
        return x

def preprocess_image_siamese(img):
    transform = transforms.Compose([
        transforms.Resize((224, 224)),
        transforms.ToTensor()
    ])
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    return transform(img)

def preprocess_image_svm(img):
    img = cv2.resize(img, (224, 224))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    return img

def extract_hog_features(img):
    hog_features = hog(img, orientations=9, pixels_per_cell=(16, 16), cells_per_block=(4, 4))
    return hog_features

def get_face(img):
    detector = MTCNN()
    faces = detector.detect_faces(img)
    if faces:
        x1, y1, w, h = faces[0]['box']
        x1, y1 = abs(x1), abs(y1)
        x2, y2 = x1 + w, y1 + h
        return img[y1:y2, x1:x2]
    return None

def verify(image, model, person):
    
    with tempfile.NamedTemporaryFile(delete=False, suffix=".jpg") as temp_image:
        temp_image.write(image.read())
        temp_image_path = temp_image.name
        
    image = cv2.imread(temp_image_path)

    face = get_face(image)

    if face is not None:
        if model == "Siamese":
            siamese = SiameseNetwork()
            siamese.load_state_dict(torch.load(f'siamese_{person.lower()}.pth'))

            face = preprocess_image_siamese(face)

            # Move to device
            device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
            model.to(device)
            face = face.to(device)
        
            with torch.no_grad():
                output = model(face)
                probability = output.item()
                pred = 1.0 if probability > 0.5 else 0.0
        
            if pred == 1:
                st.write("Match")
            else:
                st.write("Not Match")
        
        elif model == "HOG-SVM":
            with open(f'./svm_{person.lower()}.pkl', 'rb') as f:
                svm = joblib.load(f)
            with open(f'./pca_{person.lower()}.pkl', 'rb') as f:
                pca = joblib.load(f)

            face = preprocess_image_svm(face)

            hog = extract_hog_features(face)

            hog_pca = pca.transform([hog])

            pred = svm.predict(hog_pca)

            if pred == 1:
                st.write("Match")
            else:
                st.write("Not Match")
    else:
        st.write("Face not detected")

def main():
    st.title("Real-time Face Verification App")
    
    model = st.selectbox("Select Model", ["Siamese", "HOG-SVM"])
    person = st.selectbox("Select Person", ["Theo"])
    enable = st.checkbox("Enable camera")
    captured_image = st.camera_input("Take a picture", disabled=not enable)

    if captured_image:
        verify(captured_image, model, person)

if __name__ == "__main__":
    main()